matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesLineare Algebra II
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Lineare Algebra II
Lineare Algebra II < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Algebra II: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Mi 15.04.2009
Autor: mb588

Aufgabe
Man zerlege das Polynom [mm] x^4+4 [/mm] in ein Produkt über [mm] \IQ [/mm] nicht weiter faktorisierbarer Polynome.

Hey.
Die Aufgabe hört sich ja recht einfach an. ;)
Aber ich finde einfach keinen Ansatz und erst recht nicht die Lösung. Hätte die Funktion Nullstellen wäre das alles kein Problem, aber hat sie ja nicht. Meine Frage:
Gibt es eine andere Möglichkeit?

        
Bezug
Lineare Algebra II: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Mi 15.04.2009
Autor: abakus


> Man zerlege das Polynom [mm]x^4+4[/mm] in ein Produkt über [mm]\IQ[/mm] nicht
> weiter faktorisierbarer Polynome.
>  Hey.
>  Die Aufgabe hört sich ja recht einfach an. ;)
>  Aber ich finde einfach keinen Ansatz und erst recht nicht
> die Lösung. Hätte die Funktion Nullstellen wäre das alles
> kein Problem, aber hat sie ja nicht. Meine Frage:
>  Gibt es eine andere Möglichkeit?

Wenn es ohne Nullstellen dann eine Möglicheit zur Faktorisierung geben sollte, dann dürfen die Faktoren ebenfals keine Nullstellen haben. Das ist wohl nur für quadratische Polynome möglich.
Setze also [mm] x^4+4=x^4+0x^3+0x^2+0x+4=(x^2+ax+b)(x^2+cx+d) [/mm] an und mache einen Koeffizientenvergleich.
Gruß Abakus


Bezug
                
Bezug
Lineare Algebra II: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Mi 15.04.2009
Autor: mb588

Ja soweit hatte ich das auch schon, aber ich dachte mir das so, dass man das noch weiter Zerlegen kann, also in Faktoren mit Grade eins! Weil ansonsten wäre das glaub ich fast zu einfach.

Bezug
                        
Bezug
Lineare Algebra II: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Mi 15.04.2009
Autor: abakus


> Ja soweit hatte ich das auch schon, aber ich dachte mir das
> so, dass man das noch weiter Zerlegen kann, also in
> Faktoren mit Grade eins! Weil ansonsten wäre das glaub ich
> fast zu einfach.

Ein Faktor vom Grad 1 ist unmöglich, dann gäbe es ja eine Nullstelle.
Die Aufgabe war hier vor einiger Zeit schon einmal gestellt, das Ergebnis war [mm] (x^2-2x+2)(x^2+2x+2). [/mm]
Gruß Abakus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]