matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenLineare Anhängigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Lineare Anhängigkeit
Lineare Anhängigkeit < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Anhängigkeit: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:03 Mi 05.03.2008
Autor: claudi7

Aufgabe
Zeigen Sie, dass jeweils drei der vier Vektoren linear unabhängig sind und stellen Sie jeden der vier Vektoren als Linearkombination der drei anderen dar.

[mm] \vektor{1 \\ 0 \\ 0}; \vektor{0 \\ 1 \\ 0}; \vektor{0 \\ 0 \\ 1}; \vektor{1 \\ 3 \\ 4} [/mm]

Die Linearkombination aufzustellen und die Gleichung dann jeweils nach den einzelnen Vektoren umzustellen war kein Problem.
Was ich allerdings nicht verstehen ist, wie ich damit beweise, dass jeweils drei der vier Vektoren linear unabhängig sind????
Nach meinem Verständnis sind Vektoren, die sich als Linearkombination der anderen darstellen lassen linear abhängig ?

Kann mir das jemand erklären?


lineare Abhängigkeit:

- es gilt: [mm] r*\vec{a}+s*\vec{b}+t*\vec{c}=\vec{0}, [/mm] aber mindestens einer der Parameter r,s und [mm] t\not=0 [/mm]
- mindestens ein Vektor lässt sich als Linearkombination der anderen darstellen.


lineare Unabhängigkeit:

- es gilt: [mm] r*\vec{a}+s*\vec{b}+t*\vec{c}=\vec{0}, [/mm] aber alle Parameter r,s und t=0
- kein Vektor lässt sich als Linearkombination der anderen darstellen.

...so habe ich es zumindest verstanden!

        
Bezug
Lineare Anhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Mi 05.03.2008
Autor: Andi

Hi Claudi,

> Zeigen Sie, dass jeweils drei der vier Vektoren linear
> unabhängig sind und stellen Sie jeden der vier Vektoren als
> Linearkombination der drei anderen dar.
>  
> [mm]\vektor{1 \\ 0 \\ 0}; \vektor{0 \\ 1 \\ 0}; \vektor{0 \\ 0 \\ 1}; \vektor{1 \\ 3 \\ 4}[/mm]
>
> Die Linearkombination aufzustellen und die Gleichung dann
> jeweils nach den einzelnen Vektoren umzustellen war kein
> Problem.
>  Was ich allerdings nicht verstehen ist, wie ich damit
> beweise, dass jeweils drei der vier Vektoren linear
> unabhängig sind????

Das kannst du damit auch nicht beweisen.

>  Nach meinem Verständnis sind Vektoren, die sich als
> Linearkombination der anderen darstellen lassen linear
> abhängig ?

[ok] da hast du recht!
  

> Kann mir das jemand erklären?

Du sollst überprüfen, dass jeweils 3 Vektoren linear unabhängig sind.
Danach sollst du den vierten Vektor als Linearkombination der anderen schreiben. (Anmerkung: ich muss schnell was esse :-), werd dir gleich noch ein paar ausführlichere Worte schreiben, aber überprüfe du schon mal drei Vektoren auf lineare Unabhängigkeit!)

>
> lineare Abhängigkeit:
>  
> - es gilt: [mm]r*\vec{a}+s*\vec{b}+t*\vec{c}=\vec{0},[/mm] aber
> mindestens einer der Parameter r,s und [mm]t\not=0[/mm]
>  - mindestens ein Vektor lässt sich als Linearkombination
> der anderen darstellen.

[ok]

> lineare Unabhängigkeit:
>  
> - es gilt: [mm][mm] r*\vec{a}+s*\vec{b}+t*\vec{c}=\vec{0} [/mm]
>  - kein Vektor lässt sich als Linearkombination der anderen
> darstellen.

[ok]

Bezug
                
Bezug
Lineare Anhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Mi 05.03.2008
Autor: claudi7

Die Lösung der Aufgabe war jeden Vektor als Linearkombination darzustellen. Mehr haben wir nicht gemacht. Genau das hat mich ja verwirrt.
Ich versteh immer noch nicht wie ich bei drei Vektoren lineare Unabhängigkeit beweisen soll/kann, wenn sich doch alle als Liniearkombi. darstellen lassen????

Bezug
                        
Bezug
Lineare Anhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Mi 05.03.2008
Autor: steppenhahn

"Linear abhängig" und "Linear unabhängig" sind eigentlich immer Begriffe für eine Gruppe von Vektoren. Man sagt z.B.

- [mm] \vektor{1\\0\\0}, \vektor{0\\1\\0}, \vektor{0\\0\\1} [/mm] sind linear unabhängig
- [mm] \vektor{0\\0\\1}, \vektor{0\\0\\2}, \vektor{1\\0\\0} [/mm] sind linear abhängig

Die erste Aufgabenstellung richtet sich aber an die Gruppe mit allen vier Vektoren. Alle vier zusammen in einer Gruppe sind linear abhängig, weil du jeden als Linearkombination von den anderen dreien schreiben kannst.

Bei der zweiten Ausgabenstellung sollst du nun lediglich zeigen, dass je drei aus den vier gegebenen Vektoren linear unabhängig sind, d.h. das

- [mm] \vektor{1\\0\\0}, \vektor{0\\1\\0}, \vektor{0\\0\\1} [/mm] (klar!)

- [mm] \vektor{1\\0\\0}, \vektor{0\\1\\0}, \vektor{1\\3\\4} [/mm]

- [mm] \vektor{1\\0\\0}, \vektor{1\\3\\4}, \vektor{0\\0\\1} [/mm]

- [mm] \vektor{1\\3\\4}, \vektor{0\\1\\0}, \vektor{0\\0\\1} [/mm]

linear unabhängig sind.

Bezug
                                
Bezug
Lineare Anhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 05.03.2008
Autor: claudi7

okay, Danke.....dann hat unser Lehrer anscheinend nur die halbe Aufgabe gelöst :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]