matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe-SoftwareLineare Interpolation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe-Software" - Lineare Interpolation
Lineare Interpolation < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe-Software"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Interpolation: Selbststudium
Status: (Frage) überfällig Status 
Datum: 15:37 Mi 18.11.2009
Autor: matheja

Aufgabe
Hallo Leute.Ich bin am berarbeiten meiner matlab-aufgaben und stöße grad auf eine aufgabe wo ich probleme habe.

Die Aufgabe lautet:

Gegeben seien die vier Datenpunkte (x1; y1); (x1; y2); (x2; y1); (x2; y2) mit x1 < x2; y1 < y2 und die vier Werte [mm] q_{i;j} [/mm]  i; j = 1; 2. Gesucht ist eine bilineare Interpolationsfunktion
p(x; y) = [mm] b_{1} [/mm] + [mm] b_{2}x [/mm] + [mm] b_{3}y [/mm] + [mm] b_{4}xy [/mm]
mit
p(xi; yj) = [mm] q_{i;j }; [/mm] i; j = 1; 2:
(a) Zeigen Sie, dass die obige Aufgabe eindeutig losbar ist und bestimmen Sie die Koeffezienten bi.
(b) Ist die Aufgabe auch fur den Fall x1 = x2 immer losbar? Begrunden Sie Ihre Antwort.
(c) Leiten Sie aus Ihrer Losung, den in der Vorlesung vorgestellten Spezialfall ab.

zu (c): Der Spezialfall aus der Vorlesung:

I(x)= [mm] \summe_{i=1}^{n}a_{j}*b{j}x [/mm]
[mm] b_{j}=b_{0} b_{0}(x-j) [/mm]  mit [mm] b_{0}(x) [/mm] mit
[mm] b_{0}(x)=\begin{cases} 1+x, & \mbox{für } x \mbox{ elemt (-1,0]} \\ 1-x, & \mbox{für } x \mbox{elemnt (0,1]} \end{cases} [/mm] sonst 0.



zu a):
Das Gleichungssystem ist genau dann eindeutig lösbar, wenn der Wert der Determinante der Koeffizientenmatrix ungleich Null ist. Ist der Wert jedoch gleich Null, hängt die Lösbarkeit von den Werten der Nebendeterminanten ab.

Allerdings komm ich mit den aufgabe nicht klar weil ich mir die gleichung nicht aufschreiben kann, d.h auf so eine form bringen kann:
x + 2y = 4
2x − y = 3
=> x=2 und y=1 höchstens eine Lösung=> eindeutig lösbar


ich kann mit der obigen notation anfangen
wie sieht mein LGS aus
ach ich bin einfach nur verwirrt :(
helft ihr mir?


        
Bezug
Lineare Interpolation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Mi 18.11.2009
Autor: matheja

Das ist Grundproblem, das ich habe, das nicht weiß, wie das LGS aussieht.

echt keiner eine idee

Bezug
        
Bezug
Lineare Interpolation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Fr 20.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe-Software"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]