Lineare Unabhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:59 Mo 18.05.2015 | Autor: | rsprsp |
Aufgabe | Sei V ein [mm] \IK [/mm] Vektorraum, [mm] {x_{1}, . . . , x_{r}} [/mm] ⊆ V linear unabhängig. Zeige:
a) [mm] {x_{1}, . . . , x_{i-1}, x_{i} + x_{j} , x_{i+1}, . . . , x_{r}} [/mm] mit i, j ∈ {i, . . . , r} ist linear unabhängig
b) [mm] {x_{1}, . . . , x_{i-1}, λx_{i}, x_{i+1}, . . . , x_{r}} [/mm] mit 0 [mm] \not= [/mm] λ ∈ K, i ∈ {i, . . . , r} ist linear unabhängig |
a)
Annahme [mm] {x_{1}, . . . , x_{i-1}, x_{i} + x_{j} , x_{i+1}, . . . , x_{r}} [/mm] sind linear abhängig
Es gibt [mm] (a_{1},a_{2},...,a_{r}) \not= [/mm] (0,0,...,0) mit [mm] a_{i}\in\IK [/mm] mit [mm] a_{1}x_{1}+a_{2}x_{2}+...+a_{i}(x_{i}+x_{j})+..+a_{r}x_{r} [/mm] = 0
also [mm] a_{1}x_{1}+a_{2}x_{2}+...+a_{i}x_{i}+a_{i}x_{j}+..+a_{r}x_{r} [/mm] = 0
Wenn [mm] (a_{1},a_{2},...,a_{i},a_{i},...,a_{r}) \not= [/mm] (0,0,...,0) heißt, dass [mm] {x_{1}, . . . , x_{i-1}, x_{i} + x_{j} , x_{i+1}, . . . , x_{r}} [/mm] linear abhängig sind also ein Widerspruch zur Voraussetzung.
b)Annahme [mm] {x_{1}, . . . , x_{i-1}, \lambda x_{i} , x_{i+1}, . . . , x_{r}} [/mm] sind linear abhängig
Es gibt [mm] (a_{1},a_{2},...,a_{r}) \not= [/mm] (0,0,...,0) mit [mm] a_{i}\in\IK [/mm] mit [mm] a_{1}x_{1}+a_{2}x_{2}+...+a_{i}\lambda x_{i}+..+a_{r}x_{r} [/mm] = 0
Da [mm] b_{i}:= a_{i}\lambda [/mm] als Produkt 2er Elemente von [mm] \IK [/mm] wieder in [mm] \IK [/mm] liegt, folgt
[mm] a_{1}x_{1}+a_{2}x_{2}+...+b_{i} x_{i}+..+a_{r}x_{r} [/mm] = 0
Wenn [mm] (a_{1},a_{2}, ...,b_{1},.....a_{r}) [/mm] ≠ (0,0,.....0) (***) heisst das, dass [mm] {x_{1}, x_{2}, ....,x_{r}} [/mm] lin. abh. sind.
Also ein Widerspruch zur Voraussetzung. q.e.d.
Nun noch zu (***).
Wenn [mm] a_{i} [/mm] = 0, ist mindestens ein [mm] a_{j} [/mm] ≠ 0, mit j≠i. (***) ist erfüllt.
Wenn [mm] a_{i} [/mm] ≠ 0 ==> [mm] \lambda [/mm] * [mm] a_{i} [/mm] ≠ 0, da [mm] \lambda≠0 [/mm] vorausgesetzt wurde. Somit ist (***) auch erfüllt.
Sind die Beweise richtig ? Kann mich mal jemand korrigieren und schreiben was ich falsch mache ?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:27 Di 19.05.2015 | Autor: | Ladon |
Hallo rsprsp,
eigentlich nutzt du hier keinen Widerspruchsbeweis, sondern einen indirekten Beweis der Form
[mm] $$(A\Rightarrow B)\gdw (\neg B\Rightarrow \neg [/mm] A)$$ Mach dir den Unterschied einmal klar (vgl. Beweisprinzipien). Da ich wenig Zeit habe, erst mal nur eine Antwort zu a). Wenn ich gleich noch Zeit finde, kann ich gerne auch b) beantworten.
Dein Beweis zu a) ist von der Idee her vielleicht richtig. Ich würde nur folgendes ändern:
a) Annahme [mm]{x_{1}, . . . , x_{i-1}, x_{i} + x_{j} , x_{i+1}, . . . , x_{r}}[/mm] mit [mm] $i,j\in\{1,...,r\}$ [/mm] sind linear abhängig.
Unterscheide $i=j$ und [mm] $i\neq [/mm] j$.
Für $i=j$ sind wir fertig, denn dann folgt direkt durch [mm] \overline{a}_i:=2a_i, [/mm] dass [mm]a_{1}x_{1}+a_{2}x_{2}+...+\overline{a}_{i}x_{i}+..+a_{r}x_{r}=0[/mm], also [mm] x_1,...,x_r [/mm] linear abhängig.
Für [mm] $i\neq [/mm] j$ nehmen wir o.E. $i<j$ an. Dann gibt es [mm](a_{1},a_{2},...,a_{r}) \not=[/mm] (0,0,...,0) mit [mm]a_{i}\in\IK[/mm] mit [mm]a_{1}x_{1}+a_{2}x_{2}+...+a_{i}(x_{i}+x_{j})+...+a_jx_j+...+a_{r}x_{r}=0[/mm], was zu
[mm]a_{1}x_{1}+a_{2}x_{2}+...+a_{i}x_{i}+...+(a_{i}+a_j)x_{j}+..+a_{r}x_{r}=0[/mm] äquivalent ist. Setze [mm] $\overline{a}_j:=(a_{i}+a_j)$. [/mm] Dann folgt analog zu obiger Argumentation, dass [mm] x_1,...,x_r [/mm] linear abhängig sind.
MfG
Ladon
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:28 Di 19.05.2015 | Autor: | Ladon |
Den Beweis zu b) würde ich so gelten lassen.
Allerdings sei noch mal auf den Unterschied zwischen Beweis durch Widerspruch und indirekten Beweis hingewiesen! (s.o.)
MfG
Ladon
|
|
|
|