matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenLineare Unabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Lineare Unabhängigkeit
Lineare Unabhängigkeit < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Di 31.01.2012
Autor: lzaman

Hallo, leider bin ich noch unsicher in Umgang mit diesen Begriffen. Linear unabhängig bedeutet doch, das keine Umformung mir mehr erlaubt einen Zeilenvektor als Nullvektor darzustellen.

Also ein Beispiel:

[mm]A=\pmat{ 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3} [/mm]

Die Matrix A kann ich nicht mehr durch Umformung weiter vereinfachen, so ist der rg(A)=3, richtig?

Und diese 3 Zeilenvektoren sind dann linear unabhängig (Abk. l.u.).
Ist diese Aussage mehr oder weniger korrekt?

Beispiel 2:

[mm]A=\pmat{ 1 & 2 & 3 \\ 0 & 4 & 2 \\ 0 & 2 & 1} [/mm]

[mm] \Rightarrow [/mm] rg(A)=2

Bei dieser Matrix kann ich noch durch Umformung die Zeile 2 bzw. Zeile 3 eliminieren. Sind die Zeilenvektoren 2 und 3 dann linear abhängig (Abk. l. a.)?


        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:14 Mi 01.02.2012
Autor: fred97


> Hallo, leider bin ich noch unsicher in Umgang mit diesen
> Begriffen. Linear unabhängig bedeutet doch, das keine
> Umformung mir mehr erlaubt einen Zeilenvektor als
> Nullvektor darzustellen.
>
> Also ein Beispiel:
>  
> [mm]A=\pmat{ 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3}[/mm]
>  
> Die Matrix A kann ich nicht mehr durch Umformung weiter
> vereinfachen

Doch , vereinfachen durch Zeilenumformungen kann man noch. Wenn es Dir aber nur um den Rang geht, so brauchst Du nicht weiter Umformen.



> , so ist der rg(A)=3, richtig?

Ja


>  
> Und diese 3 Zeilenvektoren sind dann linear unabhängig
> (Abk. l.u.).
>  Ist diese Aussage mehr oder weniger korrekt?

Ist sie.


>  
> Beispiel 2:
>  
> [mm]A=\pmat{ 1 & 2 & 3 \\ 0 & 4 & 2 \\ 0 & 2 & 1}[/mm]
>  
> [mm]\Rightarrow[/mm] rg(A)=2
>  
> Bei dieser Matrix kann ich noch durch Umformung die Zeile 2
> bzw. Zeile 3 eliminieren. Sind die Zeilenvektoren 2 und 3
> dann linear abhängig (Abk. l. a.)?

Ja

FRED

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]