matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeLineares Gleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - Lineares Gleichungssystem
Lineares Gleichungssystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineares Gleichungssystem: Basis des Lösungsraum
Status: (Frage) beantwortet Status 
Datum: 00:48 Fr 21.01.2011
Autor: LittleStudi

Aufgabe
Beschreiben Sie das Lösungsverhalten nachstehender LGS abhangig von den auftretenden Konstanten und geben Sie die Lösungen ggf. an.

[mm] x_{1} [/mm] + [mm] x_{2} [/mm]   + [mm] x_{3} [/mm]   + [mm] x_{4} [/mm] = 1
[mm] x_{1} [/mm] + [mm] 2x_{2} [/mm] + [mm] 3x_{3} [/mm] + [mm] 4x_{4} [/mm] = 5
[mm] x_{1} [/mm] + [mm] 3x_{2} [/mm] + [mm] 5x_{3} [/mm] + [mm] 7x_{4} [/mm] = a
[mm] x_{1} [/mm] + [mm] 4x_{2} [/mm] + [mm] 7x_{3} [/mm] + [mm] 10x_{4} [/mm] = b

Hallo ich habe dieses LGS mittels Gaußverfahren auf die Form

[mm] \pmat{ 1 & 1 & 1 & 1 \parallel 1 \\ 0 & 1 & 2 & 3 \parallel 4 \\ 0 & 0 & 0 & 0 \parallel a-9 \\ 0 & 0 & 0 & 0 \parallel b-13 } [/mm]

gebracht. Hieraus folgt das es unendlich viele Lösungen gibt, wenn a = 9 [mm] \wedge [/mm] b=13 ist.

Nun muss ich jedoch noch den Lösungsraum angeben und weiß nicht wie ich das machen soll.


Der Lösungsraum Lös{A,b} sollte: [mm] \vektor{-3 \\ 4 \\ 0 \\ 0} [/mm] + [mm] \IR \vektor{1 \\ -2 \\ 1 \\ 0} [/mm] + [mm] \IR \vektor{2 \\ -3 \\ 0 \\ 1} [/mm] sein...

Den ersten Vektor komme ich auch noch wenn ich das System ganz normal mit [mm] x_{3} [/mm] und [mm] x_{4} [/mm] = 0 auflöse... aber die anderen beiden Vektoren bekomme ich einfach nicht heraus.

Ich dachte mir zuerst, dass man für [mm] x_{3} [/mm] = 1 und [mm] x_{4} [/mm] = 0 einsetzt und für den anderen Vektor  [mm] x_{3} [/mm] = 0 und [mm] x_{4} [/mm] = 1, aber dann bekomme ich ganz andere Vektoren heraus :(

Kann mir vielleicht jemand weiterhelfen?

        
Bezug
Lineares Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 02:57 Fr 21.01.2011
Autor: Lippel

Hallo,

du hattest:
  

> [mm]\pmat{ 1 & 1 & 1 & 1 \parallel 1 \\ 0 & 1 & 2 & 3 \parallel 4 \\ 0 & 0 & 0 & 0 \parallel a-9 \\ 0 & 0 & 0 & 0 \parallel b-13 }[/mm]

damit mit a = 9 und b=13:
[mm]\pmat{ 1 & 1 & 1 & 1 \parallel 1 \\ 0 & 1 & 2 & 3 \parallel 4 \\ 0 & 0 & 0 & 0 \parallel 0 \\ 0 & 0 & 0 & 0 \parallel 0 }[/mm]

Ziehe nochmal die zweite und von der ersten Zeile ab, um auf spezielle Zeilenstufenform zu kommen, d.h. oberhalb der Pivots steht nur 0:
[mm]\pmat{ 1 & 0 & -1 & -2 \parallel -3 \\ 0 & 1 & 2 & 3 \parallel 4 \\ 0 & 0 & 0 & 0 \parallel 0 \\ 0 & 0 & 0 & 0 \parallel 0 }[/mm]

Dann steht in der letzten Spalte wirklich der spezielle Lösungsvektor. Die anderen beiden stehen quasi auch schon da, man streicht die Nullzeilen und fügt Zeilen ein, sodass an den Stellen der fehlenden Pivotelemente -1 steht:

[mm]\pmat{ 1 & 0 & -1 & -2 \parallel -3 \\ 0 & 1 & 2 & 3 \parallel 4 \\ 0 & 0 & -1 & 0 \parallel 0 \\ 0 & 0 & 0 & -1 \parallel 0 }[/mm]

Dann stehen in den Spalten, in denen -1 eingefügt wurde, also hier der 3. und 4., die anderen beiden gesuchten Vektoren (noch mit -1 multipliziert, aber das ist ja egal, wie du hoffentlich weißt).


> Der Lösungsraum Lös{A,b} sollte: [mm]\vektor{-3 \\ 4 \\ 0 \\ 0}[/mm]
> + [mm]\IR \vektor{1 \\ -2 \\ 1 \\ 0}[/mm] + [mm]\IR \vektor{2 \\ -3 \\ 0 \\ 1}[/mm]
> sein...


LG Lippel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]