Lineares Sleichungssystem in C < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Löse folgendes Gleichungssystem über dem Körper der komplexen Zahlen:
(2-i)x + (2+i)y = 12 - 6i
(2-3i)x - (1-i)y = 11 - 3i |
hallo!
hab leider keine idee, wie ich das angehen soll. wäre sehr dankbar, wenn ihr mir tipps und lösungsansätze geben könntet!
Vielen Dank!
|
|
|
|
Hallo FräuleinM,
> Löse folgendes Gleichungssystem über dem Körper der
> komplexen Zahlen:
>
> (2-i)x + (2+i)y = 12 - 6i
> (2-3i)x - (1-i)y = 11 - 3i
> hallo!
> hab leider keine idee, wie ich das angehen soll. wäre sehr
> dankbar, wenn ihr mir tipps und lösungsansätze geben
> könntet!
Das geht vom Prinzip her genau wie im Reellen:
Schreibe das mal alles der Übersicht halber als Matrix auf:
[mm] $\pmat{2-i&2+i&\mid&12-6i\\2-3i&-1+i&\mid&11-3i}$
[/mm]
Die musst du in Zeilenstufenform bringen und dazu den Eintrag [mm] $a_{21}$ [/mm] eliminieren, also zu 0 machen
Dazu addiere das $-(2-3i)=(3i-2)$-fache der 1.Zeile zum $(2-i)$-fachen der 2.Zeile ...
Mache das mal, den Rest schaffst du locker!
> Vielen Dank!
LG
schachuzipus
|
|
|
|
|
hallo schachuzipus!
danke für die schnelle antwort. ich bin jetzt ganz ehrlich...ich habe keine ahnung vom matrizenrechnen. weil du gemeint hast, dass es im prinzip wie ein normales gleichungssystem funktioniert, habe ich versucht x auszudrücken, wobei mir folgendes herausgekommen ist: x= 6-(2+i)y. doch jetzt steh ich komplett an. denn wenn ich jetzt x in die erste gleichung einsetze, so steht da (2-3i)(6-(2+i)y)-(1-i)y=11-3i. ich weiß nicht, wie ich das ausrechnen soll weil mich das y irritiert. die rechenregeln für komplexe zahlen kenne ich, aber kann ich die auch anwenden, wenn eine komplexe zahl als koeffizient agiert? wenn das nicht geht, wäre ich auch über eine erklärung der matrizenvariante ausgesprochen dankbar!
|
|
|
|
|
Hallo nochmal,
> hallo schachuzipus!
>
> danke für die schnelle antwort. ich bin jetzt ganz
> ehrlich...ich habe keine ahnung vom matrizenrechnen. weil
> du gemeint hast, dass es im prinzip wie ein normales
> gleichungssystem funktioniert, habe ich versucht x
> auszudrücken, wobei mir folgendes herausgekommen ist: x=
> 6-(2+i)y.
Das kannst du natürlich auch machen, die erste Gleichung nach zB. x auflösen und dann in die 2.Gleichung einsetzen, dabei ist aber was schiefgelaufen ...
Es ist $(2-i)x+(2+i)y=12-6i=6(2-i) \ \ \ [mm] \mid:(2-i)$
[/mm]
[mm] $\Rightarrow x+\frac{2+i}{2-i}y=6$
[/mm]
Und hier musst du den Bruch richtig auflösen, erweitere dazu mit dem komplex Konjugierten des Nenners, um selbigen reell zu machen (es ist [mm] $z\cdot{}\overline z\in\IR$)
[/mm]
Rechne das nochmal aus und setze das nochmal in die andere Gleicung ein.
Den entstehenden Wust vor y dann mal ausmultiplizieren und gucken ...
> doch jetzt steh ich komplett an. denn wenn ich
> jetzt x in die erste gleichung einsetze, so steht da
> (2-3i)(6-(2+i)y)-(1-i)y=11-3i. ich weiß nicht, wie ich das
> ausrechnen soll weil mich das y irritiert. die rechenregeln
> für komplexe zahlen kenne ich, aber kann ich die auch
> anwenden, wenn eine komplexe zahl als koeffizient agiert?
> wenn das nicht geht, wäre ich auch über eine erklärung der
> matrizenvariante ausgesprochen dankbar!
Naja, mit der in der anderen Antwort erwähnten Umformung steht am Ende in der 2.Zeile [mm] $(blabla)\cdot{}y=blabla$
[/mm]
Das dann "einfach" nach y auflösen (Rechenregeln für komplexe Zahlen beachten ...)
Aber rechne mal zuerst mit deiner Variante ...
Mit der "Matrixvariante" überprüfen wir dann nachher mal dein Ergebnis, ok?
LG
schachuzipus
>
|
|
|
|
|
gut...dann hab ich also mal x= 6-(0.6-0.8i)y. das setze ich nun in die zweite gleichung ein:(2-3i)(6-(0.6-0.8i)y)-(1-i)y=11-3i. wenn ich das ganze ausrechne und umforme erhalte ich für y=0.5243+0.3385i und für x=5.9243+1.1385i.
das sind sehr blöde zahlen...ich hoffe dass das jetzt endlich stimmt. danke für deine geduld!
|
|
|
|
|
Hallo nochmal,
> gut...dann hab ich also mal x= 6-(0.6-0.8i)y.
Hmm, ich komme da auf [mm] $x=6-(0,6\red{+}0,8i)y$ [/mm] bzw. [mm] $x=6-\frac{3+4i}{5}y$
[/mm]
> das setze ich nun in die zweite gleichung
> ein:(2-3i)(6-(0.6-0.8i)y)-(1-i)y=11-3i. wenn ich das ganze
> ausrechne und umforme erhalte ich für y=0.5243+0.3385i und
> für x=5.9243+1.1385i.
> das sind sehr blöde zahlen...ich hoffe dass das jetzt
> endlich stimmt. danke für deine geduld!
Du hattest da einen VZF, ich persönlich finde auch das Weiterrechnen mit den Brüchen angenehmer.
Ich komme nach dem Einsetzen in Gleichung 2 auf $y=1-3i$, was nach einem "vernünftigen" Wert aussieht
Rechne also mit dem richtigen VZ nochmal ...
LG
schachuzipus
|
|
|
|
|
jetzt ist es mir wirklich schon peinlich, aber ich komm nicht auf dein ergebnis. ich schreib ganz einfach mal schritt für schritt auf, was ich getan hab: x in gleichung2:
(2-3i)(6-(0.6+0.8i)y)-(1-i)y=11-3i
(2-3i)(5.4-0.8i)-(1-i)y=11-3i |multiplizieren nach rechenregeln für C
(8.4-17.8i)y-(1-i)y=11-3i | subtrahieren
(7.4-16.8i)y=11-3i | dividieren
y = (11-3i)/(7.4-18.6i)
y = 0.3911+0.4825
*verzweifel*
|
|
|
|
|
Hallo nochmal,
> jetzt ist es mir wirklich schon peinlich, aber ich komm
> nicht auf dein ergebnis. ich schreib ganz einfach mal
> schritt für schritt auf, was ich getan hab: x in
> gleichung2:
> (2-3i)(6-(0.6+0.8i)y)-(1-i)y=11-3i
> (2-3i)(5.4-0.8i)-(1-i)y=11-3i |multiplizieren nach
> rechenregeln für C
leider ist's hier schon falsch, du kannst nicht 6 und -0,6y zusammenfassen!
Besser so:
[mm] $...\gdw [/mm] (2-3i)(6-0,6y-0,8iy)-(1-i)y=11-3i$
[mm] $\gdw [/mm] 12-1,2y-1,6iy-18i+1,8iy-2,4y-y+iy=11-3i$
[mm] $\gdw [/mm] -4,6y+1,2iy=-1+15i$
[mm] $\gdw [/mm] (-4,6+1,2i)y=-1+15i$
[mm] $\gdw y=\frac{-1+15i}{-4,6+1,2i}=...$
[/mm]
> (8.4-17.8i)y-(1-i)y=11-3i | subtrahieren
> (7.4-16.8i)y=11-3i | dividieren
> y = (11-3i)/(7.4-18.6i)
> y = 0.3911+0.4825
>
> *verzweifel*
>
LG
schachuzipus
|
|
|
|
|
> [mm]...\gdw (2-3i)(6-0,6y-0,8iy)-(1-i)y=11-3i[/mm]
>
> [mm]\gdw 12-1,2y-1,6iy-18i+1,8iy-2,4y-y+iy=11-3i[/mm]
ist da nicht ein vz-fehler? sollte das nicht +2,4y sein? und wieso wird -3i*-0,8iy nicht 2.4i^2y?
>
> [mm]\gdw -4,6y+1,2iy=-1+15i[/mm]
>
> [mm]\gdw (-4,6+1,2i)y=-1+15i[/mm]
>
> [mm]\gdw y=\frac{-1+15i}{-4,6+1,2i}=...[/mm]
>
wenn ja, dann lautet bei mir das ergebnis:
|
|
|
|
|
Hallo nochmal,
>
> > [mm]...\gdw (2-3i)(6-0,6y-0,8iy)-(1-i)y=11-3i[/mm]
> >
> > [mm]\gdw 12-1,2y-1,6iy-18i+1,8iy-2,4y-y+iy=11-3i[/mm]
>
> ist da nicht ein vz-fehler? sollte das nicht +2,4y sein?
Nein, [mm] $(-3i)\cdot{}(-0,8iy)=2,4\red{i^2}y=2,4\cdot{}\red{(-1)}\cdot{}y=-2,4y$
[/mm]
> und wieso wird -3i*-0,8iy nicht 2.4i^2y?
Wird es doch, aber was ist denn [mm] $i^2$ [/mm] ??
> >
> > [mm]\gdw -4,6y+1,2iy=-1+15i[/mm]
> >
> > [mm]\gdw (-4,6+1,2i)y=-1+15i[/mm]
> >
> > [mm]\gdw y=\frac{-1+15i}{-4,6+1,2i}=...[/mm]
> >
> wenn ja, dann lautet bei mir das ergebnis:
Ja? Hoffentlich $1-3i$
LG
schachuzipus
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:24 Di 31.03.2009 | Autor: | FraeuleinM |
danke dir vielmals für deine hilfe. jetzt ist mir nicht nur ein licht aufgegangen! wünsch dir noch einen schönen und erholsamen abend!
lg
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:23 Di 31.03.2009 | Autor: | FraeuleinM |
aso....mensch bin ich blöd!!! tut mir leid!!hab mich verschaut! kenn mich aus! sorry!
|
|
|
|