matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesLinearität eines Operators
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Linearität eines Operators
Linearität eines Operators < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearität eines Operators: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Di 15.06.2010
Autor: XPatrickX

Hallo zusammen,

sei A ein Operator von einem rellen Banachraum B in B. Es gelte
A(x+y)=A(x)+A(y)
und
A ist stetig.

Kann man nun folgern, dass A auch linear ist? Also eigentlich ist ja nur noch zu zeigen [mm] $A(\lambda x)=\lambda [/mm] A(x)$. Aber wie kann man die Stetigkeit dazu verwenden? Oder gibt es ein Gegenbeispiel?

Vielen Dank
Gruß Patrick

        
Bezug
Linearität eines Operators: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Mi 16.06.2010
Autor: fred97


> Hallo zusammen,
>
> sei A ein Operator von einem rellen Banachraum B in B. Es
> gelte
> A(x+y)=A(x)+A(y)
>  und
> A ist stetig.
>
> Kann man nun folgern, dass A auch linear ist? Also
> eigentlich ist ja nur noch zu zeigen [mm]A(\lambda x)=\lambda A(x)[/mm].
> Aber wie kann man die Stetigkeit dazu verwenden? Oder gibt
> es ein Gegenbeispiel?

Nein !

1. A(0)= A(0+0) = A(0)+A(0), also ist A(0)=0

2. Ist x [mm] \in [/mm] B, so zeige induktiv:  A(nx)=nA(x)  für jedes n [mm] \in \IN [/mm]

3. Ist x [mm] \in [/mm] B und n [mm] \in \IN, [/mm] so folgt mit 2. :

             $A(x)= A(n [mm] *\bruch{1}{n}x)= nA(\bruch{1}{n}x)$, [/mm]

also: [mm] $A(\bruch{1}{n}x)= \bruch{1}{n}A(x)$ [/mm]

4. Sei m [mm] \in \N [/mm] und x [mm] \in [/mm] B.

      0=A(0) = A(-mx+mx) = A(-mx)+A(mx).

mit 2. folgt: A(-mx)= -A(mx)= -mA(x)

5. Wir haben:   A(kx)=kA(x)  für k [mm] \in \IZ [/mm] und x [mm] \in [/mm] B

6. Sei r [mm] \in \IQ, [/mm] dann gibt es m [mm] \in \IZ [/mm] und n [mm] \in \IN [/mm] mit r=m/n

Mit 5. und 3. zeige: A(rx) = rA(x)   für x [mm] \in [/mm] B

Sei s [mm] \in \IR. [/mm] Dann gibt es eine Folge [mm] (r_n) [/mm] in [mm] \IQ [/mm] mit [mm] r_n \to [/mm] s

Benutze jetzt die Stetigkeit von A , um zu zeigen:

                A(sx)= sA(x)  für jedes x [mm] \in [/mm] B

FRED

P.S.  Dass B ein Banachraum ist, wurde nicht benutzt. B normiierter Raum reicht also

>  
> Vielen Dank
>  Gruß Patrick


Bezug
                
Bezug
Linearität eines Operators: Vielen Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:10 Mi 16.06.2010
Autor: XPatrickX

Danke Dir, Fred für diese ausführliche Erklärung!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]