matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Linerare Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Linerare Gleichung
Linerare Gleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linerare Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 So 26.12.2004
Autor: Juster

Hallo,

ich habe diese Aufgabe und weiß nicht wie ich das b wegbekommen soll, denn die Lösung soll [mm] (a)\not=b [/mm] sein.

(a-x)(x-b)=a²-x²


(a-x)(x-b)=(a-x)(a+x)     :(a-x)

(x-b)=(a+x)

x-x=a+b

oder o= x(a-b)

irgendwie komme ich hier nicht weiter.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Gruß Micha


        
Bezug
Linerare Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 So 26.12.2004
Autor: Fugre


> Hallo,
>  
> ich habe diese Aufgabe und weiß nicht wie ich das b
> wegbekommen soll, denn die Lösung soll [mm](a)\not=b[/mm] sein.
>  
> (a-x)(x-b)=a²-x²
>  
>
> (a-x)(x-b)=(a-x)(a+x)     :(a-x)
>  
> (x-b)=(a+x)
>  
> x-x=a+b
>  
> oder o= x(a-b)
>  
> irgendwie komme ich hier nicht weiter.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Gruß Micha
>  
>  

Hallo Micha,

du hast die Aufgabe eigentlich ganz gut bearbeitet, warst aber an einer Stelle etwas unachtsam.
Denn du hast durch (a-x) dividiert und das kann ja auch 0 sein, deshalb hast du eine Lösung geschlabbert ;-) .
Als Tipp: Teile möglichst nicht durch Unbekannte die 0 sein könnten oder Terme die 0 sein könnten.

Bei dieser Aufgabe kannst du die Division mit einem kleinen Trick umgehen.
Du willst wissen wann (a-x)(x-b)=(a-x)(a+x) ist, dazu guckst du wann die Differenz 0 ist, bringst also alles auf eine Seite,
sodass auf der anderen nur noch die Null steht.
Hier bedeutet dies:
$(a-x)(x-b)-(a-x)(a+x)=0
(a-x)((x-b)-(x+a))=0$

Nun die Überlegung: Ein Produkt ist 0, wenn einer der Faktoren 0 ist.
Und wir sehen es gibt 2 Möglichkeiten:
(1) x=a
(2) a=-b

Da die Zweite jedoch ausgeschlossen wurde, ist x=a die Lösung.

Die Klammer soll doch Betragsstriche andeuten oder?

Ich hoffe, dass ich dir helfen konnte. Sollte etwas unklar sein, so frag bitte nach.

Liebe Grüße
Fugre


Bezug
                
Bezug
Linerare Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 So 26.12.2004
Autor: e.kandrai

Sollten die Klammern in der Aufgabenstellung doch keine Betragsstriche sein, dann wäre dieser Fall [mm]a=-b[/mm] natürlich auch eine Lösung, sogar eine von x unabhängige.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]