matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieLinksinvariante Vektorfelder
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Linksinvariante Vektorfelder
Linksinvariante Vektorfelder < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linksinvariante Vektorfelder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 So 11.08.2013
Autor: Salamence

Hallo,

ich habe eine Verständnisfrage. Was sind genau linksinvariante Vektorfelder? In der VL kamen die immer vor und wurden nie definiert. Nur sowas wie $ m'(X) $ ist linksinvariant, also $ [mm] {}_{g}m_{\*}(X)=X [/mm] $ für alle $ g [mm] \in [/mm] G $. Und ich denk mir "hä?". Wann nennt man denn nun ein allgemeines Vektorfeld linksinvariant? Offenbar kommt sowas nur im Kontext von Liegruppen vor. Kann es einfach sein, dass hier an Stelle von X $ m'(X) $ stehen müsste und das dann einfach die Definition von Linksinvarianz ist?
Hab' natürlich auch schon danach gegoogelt, aber ne vernünftige Definition noch nicht gefunden. Bei wikipedia kommt man nur auf http://de.wikipedia.org/wiki/Translationsinvarianz
Da steht zwar was von linksinvarianten Vektorfeldern, aber auch nicht wirklich die Definition. :(

Grüße
salamence

        
Bezug
Linksinvariante Vektorfelder: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Mo 12.08.2013
Autor: fred97


> Hallo,
>  
> ich habe eine Verständnisfrage. Was sind genau
> linksinvariante Vektorfelder? In der VL kamen die immer vor
> und wurden nie definiert. Nur sowas wie [mm]m'(X)[/mm] ist
> linksinvariant, also [mm]{}_{g}m_{\*}(X)=X[/mm] für alle [mm]g \in G [/mm].
> Und ich denk mir "hä?". Wann nennt man denn nun ein
> allgemeines Vektorfeld linksinvariant? Offenbar kommt sowas
> nur im Kontext von Liegruppen vor. Kann es einfach sein,
> dass hier an Stelle von X [mm]m'(X)[/mm] stehen müsste und das dann
> einfach die Definition von Linksinvarianz ist?
> Hab' natürlich auch schon danach gegoogelt, aber ne
> vernünftige Definition noch nicht gefunden. Bei wikipedia
> kommt man nur auf
> http://de.wikipedia.org/wiki/Translationsinvarianz
> Da steht zwar was von linksinvarianten Vektorfeldern, aber
> auch nicht wirklich die Definition. :(
>  
> Grüße
>  salamence  


http://link.springer.com/content/pdf/10.1007%2F978-3-8348-9905-7_11.pdf

http://theory.gsi.de/~vanhees/faq/relativity/node120.html

http://www.mathematik.uni-kl.de/~mschulze/download/lg.pdf

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]