matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisLösen komplexef Gleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Lösen komplexef Gleichungen
Lösen komplexef Gleichungen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen komplexef Gleichungen: Eine kurze Frage
Status: (Frage) beantwortet Status 
Datum: 15:43 Mo 13.11.2006
Autor: peter_d

Aufgabe
[mm] $\text{ Bestimmen Sie alle komplexen Nullstellen des Polynoms.}$ [/mm]

$p(z) := [mm] z^4+4iz^3-2z^2+4iz+1$ [/mm]

[mm] $\text{\underline{Hinweis:} Multipliziere }p(z)\text{ mit }\dfrac{1}{z^2}\text{ und substituiere }w:=z+\dfrac{1}{z}$ [/mm]

So,  hallo Leute.
Diese Gleichung soll ich lösen, stell ich mir eigentlich auch gar nicht so schwer vor :-)

Nach dem ersten Schritt hat man dann
[mm] $z^2+4iz-2+\dfrac{4}{i}+\dfrac{1}{z^2}$ [/mm]

War ja noch nich schwer...
Aber wie soll ich das nun laut Hinweis substituieren. Wie genau geht man da vor?

Danke und Gruß

        
Bezug
Lösen komplexef Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Mo 13.11.2006
Autor: Leopold_Gast

... und der Rest ist auch nicht schwerer. Berechne einmal

[mm]w^2 = \left( z + \frac{1}{z} \right)^2[/mm]

Dann wirst du sehen, daß Teile davon in deinem Term vorkommen. Biege den Term durch Addition und sofortige Subtraktion desselben Gliedes so hin, daß [mm]w^2[/mm] als Summand auftritt. Und in dem, was übrig bleibt, steckt dann auch wieder [mm]w[/mm] drin. Du bekommst eine quadratische Gleichung in [mm]w[/mm].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]