Lösung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 11:48 Mo 08.01.2007 | Autor: | dreamer_2609 |
Aufgabe | Sei [mm] (a_{n})_{n} \in \IN [/mm] eine fallende Folge in [mm] (0;\infty), [/mm] sodass [mm] \summe_{n \in \IN}^{} a_{n} [/mm] konvergiert.
Zeigen Sie, dass dann [mm] \limes_{n\rightarrow\infty} na_{n} [/mm] = 0 gilt. |
Muss die Aufgaben lösen um noch ei paar Punkte zu bekommen...
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:17 Mo 08.01.2007 | Autor: | leduart |
Hallo dreamer
1. Du hast deine Aufgabe nicht richtig aufgeschrieben. sieh sie vor dem abschicken mit vorschau an, auch wenns ne Minute dauert.
2. was weisst du denn über Konvergenz von Reihen, welches Konvergenzkriterium könntest du anwenden.
nimm an n*an bleibt endlich, was würde das für die Summe bedeuten?
ein paar eigene Gedanken solltest du für deine Punkte schon aufwenden.
Gruss leduart
|
|
|
|
|
Habe jetzt alles korreigiert, quäle mich ziemlich durch analysis und nach dem Semster habe ich es auch nciht mehr von daher nur reine Theorie zu Konvergenz sprich die Standart Kriterien.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:51 Mo 08.01.2007 | Autor: | leduart |
Hallo
Eine der NOTWENDIGEN (nicht hinreichenden) Kriterien ist, dass die an eine Nullfolge bilden: das ist sicher erfüllt, wenn n*an gegen 0 konv.
Sonst Widerspruchsbeweis
falls n*an nicht gegen 0 konvergiert, dann gilt für unendlich viele [mm] an*n\ge [/mm] a oder an>a/n dann ist die Harmonische Reihe eine Minorante, und die Summe konvergiert nicht.
(Ich glaub nicht, dass du in Wirtschaftsmathe nie mehr Analysis und Konvergenz brauchst.)
Gruss leduart
|
|
|
|