matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesLösung einer Wurzel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Lösung einer Wurzel
Lösung einer Wurzel < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung einer Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:17 So 27.03.2005
Autor: vtch

Moin Leute,

ich bin der Neue. Und gleich zum Thema:
In irgendeinem Matheforum habe ich vor kurzem gelesen, dass man in der Schule lernt, dass die Lösung von z.B. [mm] \wurzel{4} [/mm] 2 oder -2 ergibt. So habe ich das bis jetzt auch immer gerechnet, selbst der Matheprof der Mathegrundlagenvorlesung im ersten Semester. Jedenfalls ist mir damals nichts anderes aufgefallen.
Anscheinend soll es hier aber keine zwei Ergebnisse sondern immer nur das positive geben. Stimmt das? Und wenn ja: Warum ist das so?

Und wenn das tatsächlich so ist, gilt dies auch für etwas kompliziertere Diskriminanten mit Variable?, also z.B. in folgender Gleichung:
[mm] \wurzel{x+1} = 5 [/mm]
Muss man hier auf einmal auch keine Fallunterscheidung mehr machen??

Gruss & Dank
Christian





PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösung einer Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 So 27.03.2005
Autor: andreas

hi

also soweit ich mich erinnern kann werden gleicheiten mit wurzeln folgendermaßen definiert:

[m] \sqrt{x} = y \; \Longleftrightarrow \; x = y^2 [/m]


das würde im konkreten fall heißen, dass für [m] \sqrt{4} = x \; \Longleftrightarrow \; 4 = x^2 [/m] und diese gleichung wird von [m] x = 2 [/m] und [m] x = -2 [/m] erfüllt, es gibt also zwei lösungen!
für [m] \sqrt{x+1} = 5 [/m] gibt es allerdings nur eine lösung, da [m] \sqrt{x+1} = 5 \; \Longleftrightarrow \; x + 1 = 25 [/m] nur die lösung [m] x = 24 [/m] besitzt (hier steht die variable in einem gewissen sinn auf der "anderen seite" der gleichung, daher nur eine lösung).

ich hoffe das hilft dir weiter, sonst frage nochmal nach.


grüße
andreas

Bezug
                
Bezug
Lösung einer Wurzel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:55 So 27.03.2005
Autor: Marc

Hallo andreas,

> also soweit ich mich erinnern kann werden gleicheiten mit
> wurzeln folgendermaßen definiert:
>  
> [m]\sqrt{x} = y \; \Longleftrightarrow \; x = y^2[/m]
>
> das würde im konkreten fall heißen, dass für [m]\sqrt{4} = x \; \Longleftrightarrow \; 4 = x^2[/m]
> und diese gleichung wird von [m]x = 2[/m] und [m]x = -2[/m] erfüllt, es
> gibt also zwei lösungen!

Sofern man in den reellen Zahlen rechnet, ist die Wurzel der Einfachheit halber immer die nicht-negative; andernfalls könnte man ja auch nicht schreiben [mm] $\wurzel{4}\red{=}2$, [/mm] sondern müßte ständig [mm] $\wurzel{4}=\{2,-2\}$ [/mm] schreiben (wie ja über [mm] $\IC$ [/mm] üblich).
In der Schule und dann in der Uni, wenn über den reellen Zahlen gerechnet wird, müßte die Definition dann also so lauten:
[m]\sqrt{x} = y \; \Longleftrightarrow \; x = y^2\ \wedge\ y\ge 0[/m]

Aber ich denke, das wird Loddar jetzt auch aufklären :-)

Viele Grüße,
Marc

Bezug
                        
Bezug
Lösung einer Wurzel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:58 So 27.03.2005
Autor: andreas

hi

da hatte ich wohl mich schon zu sehr an die komplexe wurzeldefinition gewöhnt!
also vtch: schaue dir am besten Loddar's respektive marc's definition an.

grüße
andreas

Bezug
        
Bezug
Lösung einer Wurzel: Definition (in IR)
Status: (Antwort) fertig Status 
Datum: 23:54 So 27.03.2005
Autor: Loddar

Hallo Christian!


> ich bin der Neue.

Na, denn mal: [willkommenmr] !!


> In irgendeinem Matheforum habe ich vor kurzem gelesen, dass
> man in der Schule lernt, dass die Lösung von z.B.
> [mm]\wurzel{4}[/mm] 2 oder -2 ergibt.
> Anscheinend soll es hier aber keine zwei Ergebnisse sondern
> immer nur das positive geben. Stimmt das? Und wenn ja:
> Warum ist das so?

Ich habe das Gefühl, Du vermixt hier gerade zwei (etwas) unterschiedliche Dinge.

Die Gleichung [mm] $x^2 [/mm] \ = \ 4$ hat zwei Lösungen, nämlich:

[mm] $x_{1,2} [/mm] \ = \ [mm] \pm \wurzel{4} [/mm] \ = \ [mm] \pm [/mm] 2$


Die eigentliche Wurzel an sich ist wie folgt definiert:

Die n-te Wurzel aus einer nicht-negativen reellen Zahl $a$ heißt diejenige nicht-negative reelle Zahl $w$, deren n-te Potenz gleich $a$ ist:

[mm] [center]$\wurzel[n]{a} [/mm] \ = \ w$   [mm] $\gdw$ $w^n [/mm] \ = \ a$[/center]
$a \ [mm] \in [/mm] \ [mm] \IR_0^+, [/mm] \ w \ [mm] \in [/mm] \ [mm] \IR_0^+$
[/mm]


Das heißt nochmals deutlich: der eigentliche Wurzelwert ist immer der nicht-negative Zahlenwert (nicht-negativ = positive Zahlen sowie die Null = [mm] $\IR_0^+$ [/mm] ).



> Und wenn das tatsächlich so ist, gilt dies auch für etwas
> kompliziertere Diskriminanten mit Variable?, also z.B. in
> folgender Gleichung:
> [mm]\wurzel{x+1} = 5 [/mm]
> Muss man hier auf einmal auch keine Fallunterscheidung
> mehr machen??

Mit der o.g. Begründung ist diese Frage ja eigentlich hinfällig, oder?

Als Besonderheit ist hier nur zu beachten, daß ich ja beim Umformen die Gleichung quadriere und daher eine Probe machen muß, da das Quadrieren keine Äquivalenzumformung ist.


Ich hoffe, ich konnte etwas weiterhelfen.

Gruß
Loddar


Bezug
                
Bezug
Lösung einer Wurzel: kurze Nachfrage
Status: (Frage) beantwortet Status 
Datum: 10:09 Mo 28.03.2005
Autor: vtch

Guten Morgen,

vielen Dank an Loddar und die anderen. Stimmt, ich muss unterscheiden zwischen einer Zahl und einer Gleichung, bei der ich die Wurzel ziehe. Das war mir nicht so ganz klar und ich habe es bis jetzt seit der Schulzeit falsch gemacht. Aber das müsste mir schon früher aufgefallen sein, denn der Taschenrechner gibt mir ja auch nicht 2 Lösungen an ;-)

Und meine Beispielsgleichung war natürlich schwachsinnig, da man durch das quadrieren genau eine Lösung erhält. Es hätte eine solche sein müssen, wie Loddar sie anbringt: [mm] x^2 = 4[/mm].
Wenn ich das jetzt auflöse, ist das auch keine Äuquivalenzumformung, oder? Eine Auflösung einer Betragsgleichung, bei der man ja auch zu einer Fallunterscheidung kommt, wäre auch nicht äquivalent, oder?

Gruss
Christian


Bezug
                        
Bezug
Lösung einer Wurzel: Erläuterung
Status: (Antwort) fertig Status 
Datum: 10:56 Mo 28.03.2005
Autor: Loddar

Guten Morgen Christian!


> Und meine Beispielsgleichung war natürlich schwachsinnig,
> da man durch das quadrieren genau eine Lösung erhält. Es
> hätte eine solche sein müssen, wie Loddar sie anbringt: [mm]x^2 = 4[/mm].
>  
> Wenn ich das jetzt auflöse, ist das auch keine
> Äuquivalenzumformung, oder?

Wenn Du aus Deinem o.g. Ausdruck gleich den folgenden Ausdruck machst, ist das völlig ok (also äquivalent):

[mm]x^2 \ = \ 4[/mm]   [mm]\gdw[/mm]   [mm]|x| \ = \ 2[/mm]   [mm]\gdw[/mm]   [mm]x_{1,2} \ = \ \pm 2[/mm]


Du kannst ja auch folgenden Weg gehen:

[mm]x^2 \ = \ 4[/mm]

[mm]\gdw[/mm]  [mm]x^2 - 4 \ = \ 0[/mm]

[mm]\gdw[/mm]  [mm]x^2 - 2^2 \ = \ 0[/mm]

[mm]\gdw[/mm]  [mm](x - 2)*(x + 2) \ = \ 0[/mm]

[mm]\gdw[/mm]  [mm](x - 2)=0 \ \vee \ (x + 2)=0[/mm]

[mm]\gdw[/mm]  [mm]x=2 \ \vee \ x=-2[/mm]

Aber den Umweg geht wohl niemand.
Aber Du siehst: hier sind ausschließlich Äquivalenzumformungen vorgenommen worden.




> Eine Auflösung einer Betragsgleichung, bei der man ja auch
> zu einer Fallunterscheidung kommt, wäre auch nicht äquivalent,
> oder?

Warum nicht? Irgendwie verstehe ich jetzt die Frage nicht ganz ... [verwirrt]

Du mußt halt mit der Definition des Betrages arbeiten. Und das ist auch äquivalent.

[mm] |x|:=\begin{cases} x, & \mbox{für } x \ \ge \ 0 \mbox{} \\ -x, & \mbox{für } x \ < \ 0 \mbox{} \end{cases} [/mm]


Alle Klarheiten beseitigt?

Gruß
Loddar


Bezug
                                
Bezug
Lösung einer Wurzel: ok, danke..
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:24 Mo 28.03.2005
Autor: vtch

.. alles klar. Die Nachfrage mit dem Betrag kam nur, weil ich da bis jetzt auch immer "gefolgert" habe, also nur diesen hier benutzt: [mm] \Rightarrow [/mm] .

Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]