Lösung quadrat. Gleichungen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:43 Mi 10.11.2004 | Autor: | DaBo |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Die zu lösende gleichung lautet:
3x²-7x-6=0
Was ich eigentlich brauche sind 'Tipps', um an eine solche Gleichung heran zu gehen. Womit fange ich? Auf was muss ich besonders achten? Wenn mir jemand diese Aufgabe exemplarisch vorrechnen könnte, wäre ich natürlich nicht abgeneigt, es wäre sogar sehr erwünscht, da ich mit dieser Aufgabe, so wie sie da steht, auf keinen grünen zweig komme. Jegliche Ansätze die ich bei einem vermeindlichen Weg zur Lösung hatte, endeten in wirklich verwirrenden Ergebnissen.
Mein Mathelehrer hätte gern, dass wir in Brüchen rechnen, wäre dann auch nett, wenn man das beim Lösunggsweg beachten könnte.
Danke für Antworten und sonstige Kommentare im Vorraus
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:49 Mi 10.11.2004 | Autor: | monja |
Hallo DaBo
hatte das gleiche problem. Aber jetzt bin ich schon so weit das ich dir helfen kann...Also pass auf..:
Ich weiß nicht genau was du rechnen muss aber ich glaube du musst mit der pq-Formel die Nullstellen der Gleichung berechnen.
DIe Gleichung muss du als erstes in die Bestimmte pq-Gleichung umwandeln, die lautet:
[mm] x^2+px+q=0
[/mm]
und deine Gleichung [mm] lautet:3x^2-7x-6=0
[/mm]
also musst du die 3 irgendwie wegbekommn damit das [mm] x^2 [/mm] alleine da steht...genau dies ist auch immer mein problem..ich weiss nicht wie man solche gleichungen umwandelt...wir dürfen in der Schule auch mit dem computer rechnen und da muss ich dies auch nicht können...:))))
und die Zahlen die dan vor dem x steht ist dann das p und die Zahl vor dem = Zeichen ist dann q.
und dann musst du p und q in die pq Formel einsetzten...die lautet:
[mm] x_1/2=-(p/2)-/+Wurzel [/mm] aus [mm] ((p/2)^2-q)
[/mm]
und dann hast du die nullstellen....
viel spaß noch...
monja
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:50 Mi 10.11.2004 | Autor: | Fugre |
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Die zu lösende gleichung lautet:
>
> 3x²-7x-6=0
>
> Was ich eigentlich brauche sind 'Tipps', um an eine solche
> Gleichung heran zu gehen. Womit fange ich? Auf was muss ich
> besonders achten? Wenn mir jemand diese Aufgabe
> exemplarisch vorrechnen könnte, wäre ich natürlich nicht
> abgeneigt, es wäre sogar sehr erwünscht, da ich mit dieser
> Aufgabe, so wie sie da steht, auf keinen grünen zweig
> komme. Jegliche Ansätze die ich bei einem vermeindlichen
> Weg zur Lösung hatte, endeten in wirklich verwirrenden
> Ergebnissen.
> Mein Mathelehrer hätte gern, dass wir in Brüchen rechnen,
> wäre dann auch nett, wenn man das beim Lösunggsweg beachten
> könnte.
>
> Danke für Antworten und sonstige Kommentare im Vorraus
>
Hallo DaBo,
dann versuchen wir es mal.
(1) Hier werden wir das ganze mit der pq-Formel lösen. Dieses Verfahren werden wir als erstes anwenden, weil es immer klappt und recht leicht zu merken ist.
Um die pq-Formel anwenden zu können, muss das $ [mm] x^2 [/mm] $ die 1 als Vorfaktor haben, in diesem Fall müssten wir also durch 3 teilen, so dass hier steht:
$ [mm] x^2- \bruch{7}{3} [/mm] x -2=0 $
p ist immer der Vorfaktor vom x und q ist der Summand
allgemein lautet die pq-Formel: $ x_(1,2)= - [mm] \bruch{p}{2} \pm \wurzel{ \bruch{p^2}{4} -q } [/mm] $
Also im Beispiel: $ x_(1,2)= [mm] \bruch{7}{6} \pm \wurzel{\bruch{49}{36} + 2} =\bruch{7}{6} \pm \bruch{11}{6} [/mm] $
Also $ [mm] x_1= [/mm] - [mm] \bruch{2}{3} [/mm] $ und $ [mm] x_2= [/mm] 3 $.
(2) Was auch häufig klappt, besonders wenn der Lehrer sich viele Gedanken bei einer Aufgabe macht, sind die folgenden Verfahren.
1. Binome: Du wirst die binomischen Formeln kennen, häufig bringen Lehrer solche Auf in denen du sie anwenden kannst wie die Beispiel Aufgaben, die du mal rechnen kannst.
a) $ [mm] 4x^2-24x+36=0 [/mm] $
b) $ [mm] 16x^2+16x+4=0 [/mm] $
c) $ [mm] 9-x^2=0 [/mm] $
2. Man kann Teiler erkennen: Beispielsweise kannst du bei der Aufgabe $ [mm] x^2+6x+8=0 [/mm] $ mit etwas Übung erkennen, dass
$ [mm] x_1=-2 [/mm] $ und $ [mm] x_2=-4 [/mm] $ ist. Du musst einfach gucken welche Zahlen addiert den Vorfaktor des x ergeben und multipliziert den Summanden. Die Gegenzahlen dieser Zahlen sind dann deine x-Werte. Verdeutlichen kannst du dir dies, wenn du beachtest, dass $ [mm] x^2+6x+8=(x+2)(x+4) [/mm] $ ist. Hier musst du aber beachten, dass du es nur dann sofort erkennen kannst, wenn der Vorfaktor des $ [mm] x^2 [/mm] $ 1 ist.
Ich hoffe, dass ich dir helfen konnte. Falls noch etwas unklar sein sollte, so frag bitte nach. Genauere Informationen zu den Verfahren erhältst du in der MatheBank: PQFormel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:32 Do 11.11.2004 | Autor: | DaBo |
Hi, Monja und Fugre
Eure Antworten haben mir sehr geholfen. Ich kannte die p-q-Formel zwar schon, war aber anscheinend so neber mir, dass ich einfach nicht darauf kam, sie zu benutzen. hehe. Soll ja vorkommen.
danke auf jeden fall für eure schnelle Hilfe!
Daniel
|
|
|
|