matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLösungsansatz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Lösungsansatz
Lösungsansatz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungsansatz: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:53 Di 06.01.2015
Autor: Morph007

Aufgabe
Bestimmen Sie die allgemeine Lösung:

[mm] $y'+xy=\frac{y}{x}$ [/mm]


Meine Idee:

Ich multipliziere die gesamte Gleichung mit x und erhalte so:

$x(y'+xy)=y$

Um nun die homogene Lösung zu bestimmen, setze ich die rechte Seite gleich Null und erhalte über den üblichen Weg:

[mm] $y_0=c*e^{\frac{-x^2}{2}}$ [/mm]

Soweit sollte das ja noch nachvollziehbar sein.
Jetzt aber habe ich mich gefragt "Wie komme ich auf die partikuläre Lösung und damit auf die allgemeine?"
Ich habe es mit Substitution und Variation der Konstanten versucht, aber die Ergebnisse erschienen mir doch reichlich kompliziert.

Laut Wolfram-Alpha ist die Lösung [mm] $x*c*e^{\frac{-x^2}{2}}$ [/mm] und da bin ich auf den Gedanken gekommen, dass ja meine umgestellte Ausgangsgleichung $x(y'+xy)=y$ eigentlich sagt, dass die Lösung (also y) dem x-fachen der homogenen Lösung entspricht. Oder anders gesagt anhand der Original Ausgangsgleichung: Die homogene Lösung ist der Quotient aus der allgemeinen Lösung und x, also ist die allgemeine Lösung das Produkt aus der homogenen Lösung und x.

Kann man das so begründen oder gibt es noch einen Weg das ganze anders zu bestimmen?

        
Bezug
Lösungsansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Di 06.01.2015
Autor: fred97


> Bestimmen Sie die allgemeine Lösung:
>  
> [mm]y'+xy=\frac{y}{x}[/mm]
>  
> Meine Idee:
>  
> Ich multipliziere die gesamte Gleichung mit x und erhalte
> so:
>  
> [mm]x(y'+xy)=y[/mm]
>  
> Um nun die homogene Lösung zu bestimmen, setze ich die
> rechte Seite gleich Null

Aua !!!! Und was ist mit demm y auf der linken Seite ???  Nee, so geht das nicht.


Die Dgl.

$ [mm] y'+xy=\frac{y}{x} [/mm] $

ist doch nach Auflösen nach y':



  (*)  [mm] y'=(\frac{1}{x}-x)y [/mm]

(*) ist eine lineare, homogene Dgl. 1. Ordnung.

FRED


> und erhalte über den üblichen
> Weg:
>  
> [mm]y_0=c*e^{\frac{-x^2}{2}}[/mm]
>  
> Soweit sollte das ja noch nachvollziehbar sein.
>  Jetzt aber habe ich mich gefragt "Wie komme ich auf die
> partikuläre Lösung und damit auf die allgemeine?"
>  Ich habe es mit Substitution und Variation der Konstanten
> versucht, aber die Ergebnisse erschienen mir doch reichlich
> kompliziert.
>  
> Laut Wolfram-Alpha ist die Lösung [mm]x*c*e^{\frac{-x^2}{2}}[/mm]
> und da bin ich auf den Gedanken gekommen, dass ja meine
> umgestellte Ausgangsgleichung [mm]x(y'+xy)=y[/mm] eigentlich sagt,
> dass die Lösung (also y) dem x-fachen der homogenen
> Lösung entspricht. Oder anders gesagt anhand der Original
> Ausgangsgleichung: Die homogene Lösung ist der Quotient
> aus der allgemeinen Lösung und x, also ist die allgemeine
> Lösung das Produkt aus der homogenen Lösung und x.
>  
> Kann man das so begründen oder gibt es noch einen Weg das
> ganze anders zu bestimmen?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]