matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenLogarithmengleichungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Logarithmengleichungen
Logarithmengleichungen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmengleichungen: Ich benötige eine Lösungsidee
Status: (Frage) beantwortet Status 
Datum: 13:25 Di 06.03.2018
Autor: wolfgangmax

Aufgabe
[mm]
2ln(x^2-5)=ln(x+5) [/mm]
 


<br>Eine Lösungsidee wäre: die rechte und/oder linke Seite zu substituieren:
ln(x+5) = u und [mm] 2ln(x^2-5) [/mm] = [mm] v^2. [/mm] Es enstände die Gleichung
[mm] v^2 [/mm] = u, aber damit kann ich auch nichts anfangen
Eine andere Lösungsidee wäre: Logarithmengesetze anwenden
2 [mm] ln(x^2-5) [/mm] = ln (x+5)     rechte Seite gleich Null
2 [mm] ln(x^2-5)-ln(x+5) [/mm] = 0    2 ln auflösen
[mm] ln((x^2-5)(x^2-5))/ln(x+5)=0 [/mm]
Aber auch hier komme ich nicht weiter
Über eine Idee würde ich mich sehr freuen

 

        
Bezug
Logarithmengleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Di 06.03.2018
Autor: Diophant

Hallo,

> <br>Eine Lösungsidee wäre: die rechte und/oder linke
> Seite zu substituieren:
> ln(x+5) = u und [mm]2ln(x^2-5)[/mm] = [mm]v^2.[/mm] Es enstände die
> Gleichung
> [mm]v^2[/mm] = u, aber damit kann ich auch nichts anfangen
> Eine andere Lösungsidee wäre: Logarithmengesetze
> anwenden
> 2 [mm]ln(x^2-5)[/mm] = ln (x+5)     rechte Seite gleich Null
> 2 [mm]ln(x^2-5)-ln(x+5)[/mm] = 0    2 ln auflösen
> [mm]ln((x^2-5)(x^2-5))/ln(x+5)=0[/mm]
> Aber auch hier komme ich nicht weiter
> Über eine Idee würde ich mich sehr freuen

Deine zweite Idee ist zielführend. Allerdings hast du da ein Logarithmengesetz falsch angewendet. Es ist

[mm]log(a)-log(b)=log\left( \frac{a}{b}\right)[/mm]

und damit bekommt man

[mm]\begin{aligned} 2*ln(x^2-5)-ln(x+5)&=0\ \gdw\\ \\ ln\left(\frac{(x^2-5)^2}{x+5}\right)&=0\ \gdw\\ \\ \frac{(x^2-5)^2}{x+5}&=1\\ \end{aligned}[/mm]

Das eigentliche Problem bekommst du jetzt, da das auf eine Gleichung 4. Ordnung hinausläuft, wenn man noch mit dem Nenner multipliziert.

BTW: Könnte das im ersten Logarithmus auch eine -25 sein anstelle der -5? Das würde die Sache sehr vereinfachen...


Gruß, Diophant

Bezug
        
Bezug
Logarithmengleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Di 06.03.2018
Autor: fred97


> [mm]

2ln(x^2-5)=ln(x+5)[/mm]

>   
>  
> <br>Eine Lösungsidee wäre: die rechte und/oder linke
> Seite zu substituieren:
>  ln(x+5) = u und [mm]2ln(x^2-5)[/mm] = [mm]v^2.[/mm] Es enstände die
> Gleichung
>  [mm]v^2[/mm] = u, aber damit kann ich auch nichts anfangen
>  Eine andere Lösungsidee wäre: Logarithmengesetze
> anwenden
>  2 [mm]ln(x^2-5)[/mm] = ln (x+5)     rechte Seite gleich Null
>  2 [mm]ln(x^2-5)-ln(x+5)[/mm] = 0    2 ln auflösen
>  [mm]ln((x^2-5)(x^2-5))/ln(x+5)=0[/mm]
>  Aber auch hier komme ich nicht weiter
>  Über eine Idee würde ich mich sehr freuen
>  
>  

  Mit $2 [mm] \ln(x^2-5)= \ln ((x^2-5)^2)$ [/mm] und der Injektivität des Logarithmus kommt man sofort auf

[mm] (x^2-5)^2=x+5. [/mm]

Aber eine Gleichung vom Grad 4 bleibt einem nicht erspart...

Bezug
        
Bezug
Logarithmengleichungen: Lösungsidee - vielen Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:07 Mi 07.03.2018
Autor: wolfgangmax

Ich wollte mich für die Unterstützung ganz herzlich bedanken
MfG
Wolfgang Worm

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 4m 1. Kian
USons/Punktwolken vergleichen?
Status vor 1h 15m 2. Diophant
ZahlTheo/Diophantische Gleichung 3 Var
Status vor 1h 24m 2. Gonozal_IX
UAnaR1Funk/L Beweis ohne Logarithmusdef.
Status vor 2h 31m 7. Annkristin
IntTheo/mehrdim. part. Int., Doppelint
Status vor 3h 01m 2. fred97
ULinAEw/Eigenwerte und Matrix
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]