matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungLogarithmische Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Logarithmische Integration
Logarithmische Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmische Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:05 Mi 28.02.2007
Autor: maxxen1

Aufgabe
Ermittle eine Stammfunktion F zu [mm] f(x):\bruch{x²}{x³-1} [/mm]

bin zu zwei ergebnissen gekommen und wollte Fragen ob beide richtig sind:

[mm] 1):\bruch{1}{3}\integral_{}^{}{\bruch{3x²}{x³-1} dx} [/mm]

hier habe ich den Zähler verändert und komme zu dem Ergebnis:

[mm] \bruch{1}{3}ln|x³-1| [/mm]     (ohne die Integrationskonstante)

2) [mm] \bruch{1}{3}\integral_{}^{}{\bruch{x²}{\bruch{1}{3}x³-\bruch{1}{3}} dx} [/mm]

Hier habe ich den Nenner verändert und algebraisch müsste doch eigentlich alles richtig sein
jetzt wurde daraus das zweite ergebnis:

[mm] \bruch{1}{3}ln|\bruch{1}{3}x³-\bruch{1}{3}| [/mm]


vielen Dank für die Aufmerksamkeit
Max

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Logarithmische Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 15:25 Mi 28.02.2007
Autor: Zwerglein

Hi, maxxen,

> Ermittle eine Stammfunktion F zu [mm]f(x):\bruch{x²}{x³-1}[/mm]
>  bin zu zwei ergebnissen gekommen und wollte Fragen ob
> beide richtig sind:
>  
> [mm]1):\bruch{1}{3}\integral_{}^{}{\bruch{3x²}{x³-1} dx}[/mm]
>  
> hier habe ich den Zähler verändert und komme zu dem
> Ergebnis:
>  
> [mm]\bruch{1}{3}ln|x³-1|[/mm]     (ohne die Integrationskonstante)

Grade die INTEGRATIONSKONSTANTE ist hier entscheidend! Wart's mal ab:

> 2)
> [mm]\bruch{1}{3}\integral_{}^{}{\bruch{x²}{\bruch{1}{3}x³-\bruch{1}{3}} dx}[/mm]
>  
> Hier habe ich den Nenner verändert und algebraisch müsste
> doch eigentlich alles richtig sein
>  jetzt wurde daraus das zweite ergebnis:
>  
> [mm]\bruch{1}{3}ln|\bruch{1}{3}x³-\bruch{1}{3}|[/mm]

So, das wird nun umgeformt:

=  [mm] \bruch{1}{3}ln|\bruch{1}{3}(x³-1)| [/mm]

Logarithmengesetze: ln(a*b) = ln(a) + ln(b), daher:

... = [mm] \bruch{1}{3} [/mm] * [mm] (ln(\bruch{1}{3}) [/mm] + ln|x³-1|)

= [mm] \bruch{1}{3}*ln(\bruch{1}{3}) [/mm] + [mm] \bruch{1}{3}*ln|x³-1)| [/mm]

Bedeutet: Deine beiden Ergebnisse unterscheiden sich nur durch eine (wenn auch recht seltsame) additive KONSTANTE.

Da alle Stammfunktionen sich untereinander durch additive Konstanten unterscheiden, sind Deine beiden Ergebnisse richtig - aber eben nur unter Einbeziehung der Integrationskonstanten!
Ergo: Vergiss die Integrationskonstante nicht!!!

mfG!
Zwerglein

Bezug
                
Bezug
Logarithmische Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 Mi 28.02.2007
Autor: maxxen1

Logisch aber leider kann ich mir dies schlecht vorstellen, denn wäre dieses Integral bestimmt, würde ich aus
der gleichen Funktion zwei verschiedene Ergebnisse erhalten, was ja eigentlich unsinn ist, denn die aufgespannte Fläche
die die Funktion mit der x-Achse bildet ist nicht veränderlich.


Bezug
                        
Bezug
Logarithmische Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 Mi 28.02.2007
Autor: Zwerglein

Hi, maxxen,

> Logisch aber leider kann ich mir dies schlecht vorstellen,
> denn wäre dieses Integral bestimmt, würde ich aus
>  der gleichen Funktion zwei verschiedene Ergebnisse
> erhalten, was ja eigentlich unsinn ist, denn die
> aufgespannte Fläche
>  die die Funktion mit der x-Achse bildet ist nicht
> veränderlich.

Stimmt nicht!

Pass auf:
Du hast Stammfunktion Nr. 1, sagen wir F(x).

Nun hast Du ein bestimmtes Integral berechnet und kriegst:

[mm] [F(x)]_{a}^{b} [/mm] = F(b) - F(a)

Nun nimmst Du Stammfunktion Nr. 2:  [mm] F_{2}(x) [/mm] = F(x) + c

Dann kriegst Du diesmal beim bestimmten Integral:

[mm] [F_{2}(x)]_{a}^{b} [/mm] = [F(x) + [mm] c]_{a}^{b} [/mm]  
=  (F(b) + c) - (F(a) + c) = F(b) + c - F(a) - c
= F(b) - F(a),

also: genau dasselbe!!!

Merke: Beim bestimmten Integral ist es gleichgültig, welche der vielen Stammfunktionen einer Funktion f man benutzt!

mfG!
Zwerglein


Bezug
                                
Bezug
Logarithmische Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:33 Mi 28.02.2007
Autor: maxxen1

Danke, du hast mir damit sehr weitergeholfen


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]