matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenLogarithmus im Exponent
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Logarithmus im Exponent
Logarithmus im Exponent < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmus im Exponent: Wie weiter
Status: (Frage) beantwortet Status 
Datum: 07:32 Do 08.09.2016
Autor: BeniMuller

Aufgabe
<br>
[mm]x^{log_{2}(3)}=666[/mm]


<br>
Wenn ich auf beiden Seiten logarithmiere erhalte ich
[mm] \frac{log3}{log2}log(x)=log(666)[/mm]

bzw.
[mm]log(x)=log(666)\frac{log2}{log3}[/mm]

Kann ich jetzt das Loragithmieren "rückgängig" machen und schreiben:

[mm]x= \frac{666*log2}{log3}[/mm]

Besten dank für jeden Hinweis
Gruss, Beni aus Zürich


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

 

        
Bezug
Logarithmus im Exponent: Antwort
Status: (Antwort) fertig Status 
Datum: 08:48 Do 08.09.2016
Autor: Event_Horizon

Hallo!

Nein, den letzten Schritt kannst du nicht ausführen. (Und wieso eigentlich nur bei der 666?)

Ein Logarithmus wird ja nicht einfach "rückgängig gemacht", sondern du potenzierst. Du hast nicht angegeben, welchen Logarithmus du verwendest, bist in der Wahl aber auch völlig frei. Man nimmt dann ja gern den natürlichen:


$ [mm] \ln(x)=\ln(666)\frac{\ln 2}{\ln3} [/mm] $

$ [mm] e^{\ln(x)} =e^{\ln(666)\frac{\ln 2}{\ln3}} [/mm] $

Wenn man das vereinfacht, kommt man am Ende auf

$ x [mm] =666^{\log_32}$ [/mm]



Bezug
                
Bezug
Logarithmus im Exponent: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:11 Fr 09.09.2016
Autor: BeniMuller

Super :-)
Besten dank aus dem sommerlich sonigen Zürich

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]