matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationLokal konstant
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Lokal konstant
Lokal konstant < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lokal konstant: Hallo,
Status: (Frage) beantwortet Status 
Datum: 20:13 Mi 19.12.2012
Autor: looney_tune

Aufgabe
Es sei U [mm] \subset \IR^n [/mm] offen und f: U [mm] \to \IR^m [/mm] sei in allen Punkten x [mm] \in [/mm] U total differenzierbar mit Df(x)=0
a) Zeige, dass f lokal konstant ist, d.h. dass es für jeden Punkt x [mm] \in [/mm] U eine Umgebung V [mm] \subset [/mm] U von x gibt, so dass f auf V konstant ist.

Das habe ich jetzt mit dem Mittelwertsatz der Differentialrechnung in mehreren Veränderlichen versucht:

Sei [mm] \gamma \in \IR^n [/mm] so, dass x+t [mm] \gamma, [/mm] 0 [mm] \le [/mm] t [mm] \le [/mm] 1 liegt. Dann gilt:
f(x+ [mm] \gamma) [/mm] -f(x)= [mm] (\integral_{0}^{1}{Df(x+t\gamma) dt})\gamma [/mm]

Df(x)=0, d.h.
[mm] f(x+\gamma)-f(x)= (\integral_{0}^{1}{0dt})\gamma [/mm] = 0
[mm] \gdw f(x+\gamma)=f(x) [/mm]
[mm] \gdw [/mm] f ist konstant

kann man das so machen?

        
Bezug
Lokal konstant: Antwort
Status: (Antwort) fertig Status 
Datum: 06:37 Do 20.12.2012
Autor: fred97

Deine Idee ist gut, Deine Ausführungen sind schlampig und ungenau.

Ist x [mm] \in [/mm] U, so gibt es eine offene Kugel V um x mit V [mm] \subseteq [/mm] U.

Jetzt nehmen wir 2 Punkte a und b aus V her. Die Verbindungsstrecke von a un b liegt in V.

Der Mittelwertsatz und die Vor. an die Ableitung von f liefern:

    f(a)=f(b).

Damit ist f auf V konstant.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]