matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungLotto
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitsrechnung" - Lotto
Lotto < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lotto: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:32 So 18.01.2009
Autor: nunu

Hallo
Ich bräuchte mal eine kleine Ansatzhilfe
Wir wiederholen gerade Stochastik auf der 10 und haben die Aufgabe auszurechnen wie warscheinlich es ist beim Lotto ohne zurücklegen 6 bzw 5 richtige zu ziehen
Würde mich freuen wenn mir jemand eine kleine Hilfe geben kann ich weiß noch das das irgendwie was mit Faaakultäten zutun hat und das man berücksichtigen muss das dir Reihenfolge egal ist aber wie genau das ging eiß ich nicht mehr
DAnke schon mal für eure HIlfe

        
Bezug
Lotto: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:29 So 18.01.2009
Autor: Eliss

Ich glaube dass es so ist: wenn die Anzahl der möglichen Zahlen z.B. 49 ist und du  6 richtige willst;
dann ist die Wahrscheinlichkeit
1 zu 49*48*47*46*45*44 (also wie groß ist die Wahrscheinlichkeit, dass eine Ziffer stimmt: 1 zu 49; dann die 2. ziffer: 1 zu 49-1, denn eine zahl ist ja schon raus; ...)
Bin mir da aber nicht sicher
gruß
eliss
      

Bezug
        
Bezug
Lotto: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 So 18.01.2009
Autor: kuemmelsche

Hallo nunu,

die Mitteilung dürfte nicht ganz richtig sein...

Ich sag nur mal Stichwort "Binomialkoeffizient".

Aber auch ohne dem gehts zu erklären:

Du hast ja genau 6 Zahlen gewählt. Im ersten Durchgang ist die Wahrscheinlichkeit eine deiner Zahlen zu erwischen damit [mm] \bruch{6}{49}. [/mm] Im zweiten Durchgang ist dann ja sowohl eine deiner Zahlen, als auch die im Topf weg. Die Wahrscheinlichkeit nochmal eine deiner Zahlen zu erwischen ist dann [mm] \bruch{5}{48} [/mm] und so weiter.

Insgesammt ist die Wahrscheinlichkeit für ein 6er im Lotto damit [mm] \bruch{6*5*4*3*2*1}{49*48*47*46*45*44}. [/mm]

Einfacher geht das über dem Binomialkoeffizienten:

[mm] \vektor{n \\ k}=\bruch{n!}{k!(n-k)!}. [/mm]

Er gibt dir an, wie viele Möglichkeiten es gibt, aus n Kuglen k beliebige auszuwählen.

z.B. wäre dann die Wahrscheinlichkeit einen 6er im Lotto zu haben [mm] \bruch{\vektor{6 \\ 6}}{\vektor{49 \\ 6}}. [/mm]

Ich erkläre bewusst das hier nicht weiter. Versuch einfach mal das geschriebene nachzuvollziehen und frage im Zweifelsfall nochmal nach.

lg Kai

Bezug
                
Bezug
Lotto: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:41 Mo 19.01.2009
Autor: Eliss

Uuups, da hab ich was verwechselt!!
Sorry :-)!



Bezug
                
Bezug
Lotto: Vorsicht...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:44 Mo 19.01.2009
Autor: dunno

Es ist ein klein wenig Vorsicht geboten mit [mm] \bruch{\vektor{6 \\ 6}}{\vektor{49 \\ 6}}. [/mm]
Nur dass keine falschen Rückschlüsse auf z.B. die Wahrscheinlichkeit eines 4ers geschehen.

Die anzahl richtig getippten Zahlen sind nämlich hypergeometrisch verteilt. mir Parametern [mm] n\in\IN [/mm] und [mm] m,r\in{1,...n} [/mm]

Das heisst, dass die Gewichtsfunktion folgendermassen aussieht:

[mm] \bruch{\vektor{r \\ k}\cdot\vektor{n-r \\ m-k}}{\vektor{n \\ m}} [/mm]

Sie kommt folgendermassen zustande: Man hat in einer Urne n Gegenstände, davon r vom Typ 1 und n-r vom Typ 2. Man zieht dann ohne Zurücklegen m der Gegenstände; Die Zufallsvariable X beschreibt die Anzahl der gegenstände vom Typ 1 in dieser Stichprobe der grösse m.

Wenn du jetzt die Gewichtsfunktion herleiten willst nimmst du an, dass alle der insgesamt [mm] \vektor{n \\ m} [/mm] möglichen Stichproben gleich wahrscheinlich sind (was durchaus eine sinnvolle Annahme ist).
X=k heisst, dass wir aus den r Gegenständen vom Typ 1 gerade k erwischen müssen UND aus den restlichen n-r die noch fehlenden m-k; die Anzahl der Stichproben mit X=k ist also

[mm] \vektor{r \\ k}\cdot\vektor{n-r \\ m-k} [/mm]

Daraus ergibt sich die obige Formel (wenn man durch die Gesamtanzahl möglicher Stichproben teilt)

[mm] \bruch{\vektor{r \\ k}\cdot\vektor{n-r \\ m-k}}{\vektor{n \\ m}} [/mm]

Lotto ist genau ein solcher Fall mit r Zahlen die man richtig tippen soll (d.h. r Zahlen vom Typ 1, r=6 da man ja nicht mehr als 6 Gewinnzahlen haben kann). X beschreibt wie viel richtige Zahlen man aus der Stichprobe mit der Grösse m=6 (man kann nicht mehr Zahlen als 6 tippen) erwischt hat.
n=49 (im deutschen Lotto, in der Schweiz ist n=45)

Wenn du nun z.B. an einem 4er im Lotto interessiert bist setzt du X=k mit k=4

Dann in die Formel einsetzen

[mm] \bruch{\vektor{6 \\ 4}\cdot\vektor{43 \\ 2}}{\vektor{49 \\ 6}} [/mm] = [mm] 9.68\cdot10^{-4} [/mm]

Wenn du aber nur
[mm] \bruch{\vektor{6 \\ 4}}{\vektor{49 \\ 6}} [/mm] berechnest bekommst du [mm] 1.07\cdot10^{-6} [/mm]

Das ist ein Unterschied von mehr als einer Grössenordnung!

Warum die Berechnung dennoch stimmt für den 6er mit dieser Formel kannst au auch einsetzen in die obige Formel verifizieren. Du bekommst dann


[mm] \bruch{\vektor{6 \\ 6}\cdot\vektor{43 \\ 0}}{\vektor{49 \\ 6}}=\bruch{1}{\vektor{49 \\ 6}} [/mm]

Dies ist numerisch wieder dasselbe wie oben. Aber die Formel ist dennoch nicht korrekt, was sich zeigt sobald man vom "Spezialfall" 6er absieht!

lg Dunno





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]