matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikML geometrische Verteilung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stochastic Theory" - ML geometrische Verteilung
ML geometrische Verteilung < Stochastic Theory < University < Maths <
View: [ threaded ] | ^ Forum "Uni-Stochastic Theory"  | ^^ all forums  | ^ Tree of Forums  | materials

ML geometrische Verteilung: Frage (beantwortet)
Status: (Question) answered Status 
Date: 17:28 Do 04/10/2018
Author: hase-hh

Aufgabe
Bei der Qualitätskontrolle eines bestimmten Produkts werden am Laufband zufällig Stichproben entnommen, auf Fehler überprüft und wieder zurückgelegt. dabei wird jeweils die Anzahl der Stichproben zwischen zwei defekten Proben notiert. Folgende Liste nach 10 defekten Exemplaren liegt vor:

27, 42, 29, 37, 41, 29, 30, 38, 41, 34.

Geben Sie den Maximum-Likelihood-Schätzwert für den Anteil der defekten Geräte an, welcher sich aus der obigen Stichprobe und der Annahme, dass die Zufallsvariable X  "Anzahl der intakten Geräte bis zum nächsten Defekt" bei der obigen Stichprobe geometrisch verteilt ist mit

P(X = n) = [mm] (1-p)^{n-1}*p [/mm]  .




        
Bezug
ML geometrische Verteilung: Mitteilung
Status: (Statement) No reaction required Status 
Date: 20:42 Do 04/10/2018
Author: luis52

Kann es sein, dass du deine Hochschularbeiten noch nicht gemacht hast? Was weisst du denn ueber ML?

Bezug
                
Bezug
ML geometrische Verteilung: Mitteilung
Status: (Statement) No reaction required Status 
Date: 21:53 Do 04/10/2018
Author: hase-hh

Merkwürdig, dass eine Mitteilung als Beantwortung eingestuft wird???

Die Frage ist nicht beantwortet, also offen.


Bezug
        
Bezug
ML geometrische Verteilung: Mitteilung
Status: (Statement) No reaction required Status 
Date: 12:22 Fr 05/10/2018
Author: hase-hh

s.u.
Bezug
        
Bezug
ML geometrische Verteilung: Frage (beantwortet)
Status: (Question) answered Status 
Date: 10:31 So 07/10/2018
Author: hase-hh

... ein Versuch...

[mm] x_i [/mm] sind die Stichprobenwerte

mit [mm] \summe_{i=1}^{10} x_i [/mm] = 348


[mm] L(x_1,x_2,...,x_{10}, [/mm] p) = [mm] P(X=x_1)*P(X=x_2)...*P(X=x_{10}) [/mm]

= [mm] (1-p)^{x_1 -1}*p...*(1-p)^{x_{10} -1}*p [/mm]

= [mm] p^{10}*(1-p)^{\summe_{i=1}^{10} x_i} [/mm]

= [mm] p^{10}*(1-p)^{348-10} [/mm]

= [mm] p^{10}*(1-p)^{338} [/mm]

Von dieser Funktion suche ich den Extremwert bzw. das Maximum.

L ' [mm] (x_1,x_2,...,x_10, [/mm] p) = [mm] 10*p^9*(1-p)^{338} +p^{10}*338*(1-p)^{337}*(-1) [/mm]

= [mm] p^9*(1-p)^{337}*[10*(1-p) [/mm] - 338*p)]

notwendige Bedingung

L ' ( [mm] x_1,x_2,...,x_10, [/mm] p) = 0

[mm] p^9*(1-p)^{337}*[10*(1-p) [/mm] - 338*p)]  = 0


=>  10-10p -338p = 0

p = [mm] \bruch{10}{348} \approx [/mm] 0,0287


richtig?


Bezug
                
Bezug
ML geometrische Verteilung: Antwort
Status: (Answer) finished Status 
Date: 10:44 So 07/10/2018
Author: luis52


>
> richtig?
>  

[ok] Geht doch.

Kleiner Tipp: Wenn du anstatt mit $L(p)= [mm] p^{10}\cdot{}(1-p)^{338} [/mm] $ mit [mm] $\ln [/mm] L(p)$ rechnest, wird das Differenzieren einfacher. Biede Funktionen besitzen dieselben Maxima.

Bezug
                        
Bezug
ML geometrische Verteilung: Mitteilung
Status: (Statement) No reaction required Status 
Date: 14:16 Fr 12/10/2018
Author: hase-hh

Ok.

f(p) = ln(L(p))

f(p) = [mm] ln(p^{10}*(1-p)^{338}) [/mm]

f(p) = [mm] ln(p^{10]} [/mm] + [mm] ln((1-p)^{338}) [/mm]

f(p) = 10*ln(p) + 338*ln(1-p)

f ' (p) = [mm] 10*\bruch{1}{p} +338*\bruch{1}{1-p}*(-1) [/mm]  | *p*(1-p)

0 = 10*(1-p) -338*p

p = [mm] \bruch{10}{348} [/mm]



Bezug
View: [ threaded ] | ^ Forum "Uni-Stochastic Theory"  | ^^ all forums  | ^ Tree of Forums  | materials


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]