matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenMWS?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - MWS?
MWS? < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

MWS?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Fr 22.01.2010
Autor: notinX

Aufgabe
Sei [mm] $f:[0,1]\to\IR$ [/mm] differenzierbar. Man beweise:
Ist $f(0)=0$ und [mm] $f'(x)\leq\lambda [/mm] f(x)$ für ein festes [mm] $\lambda>0$ [/mm] und alle [mm] $x\in[0,1]$, [/mm] so ist [mm] $f(x)\leq0$ [/mm] im Intervall $[0,1]$

Kann mir jemand einen Tipp zur Lösung dieser Aufgabe geben?
Alles was mir zu der Aufgabe einfällt ist:
z.z.: [mm] $f(x)\leq0$ $\forall x\in[0,1]$ [/mm]
nach MWS exisitert ein [mm] x_0\in(0,1) [/mm] mit
[mm] $f'(x_{0})=\frac{f(1)-\overbrace{f(0)}^{=0}}{1-0}=f(1)$ [/mm]
keine Ahnung ob man das gebrauchen kann...

        
Bezug
MWS?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Sa 23.01.2010
Autor: Cybrina

Hallo,

also den MWS kannst du nur anwenden, wenn du zwei Werte hast, von denen du eine Aussage über die "Mitte" treffen willst, wenn du z.B. f(0) UND f(1) wüsstest, tust du aber nicht.

Ansonsten wäre mein Tipp: Überleg, was für f'(x) bei x=0 gelten muss und was für evtl. weitere Nullstellen von f gilt. Wie muss f'(x) dort aussehen?

Grüße,

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]