matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1MWS der Integralrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis des R1" - MWS der Integralrechnung
MWS der Integralrechnung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

MWS der Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:16 Mo 15.02.2016
Autor: impliziteFunktion

Aufgabe
Seien [mm] $a
Zeigen Sie:

[mm] \left(\int_a^b f(x)\, dx\right)\left(\int_a^b \frac{1}{f(y)}\, dy\right)\geq (b-a)^2 [/mm]

Hallo,

ich möchte diese Abschätzung beweisen.
Als Hinweis ist gegeben, dass man zu erst zeigen soll, dass für alle [mm] $x,y\in[a,b]$ [/mm] gilt:

[mm] $\frac{f(x)}{f(y)}+\frac{f(y)}{f(x)}\geq [/mm] 2$

Dies ist ja eine bekannte Abschätzung die man stumpf nachrechnen kann und dann die zweite binomische Formel anwendet.

Zu der eigenen Aufgabe möchte ich den Mittelwertsatz der Integralrechnung anwenden.
Demnach gibt es [mm] $\xi_1,\xi_2\in[a,b]$ [/mm] mit

[mm] \int_a^b f(x)\,dx=f(\xi_1)(b-a) [/mm] und [mm] \int_a^b \frac{1}{f(y)}\,dy=\frac{1}{f(\xi_2)}(b-a) [/mm]

Damit erhalte ich also bereits

[mm] $\left(\int_a^b f(x)\, dx\right)\left(\int_a^b \frac{1}{f(y)}\, dy\right)=\frac{f(\xi_1)}{f(\xi_2)}(b-a)^2$ [/mm]

Jetzt muss ich noch irgendwie zeigen, dass [mm] $\frac{f(\xi_1)}{f(\xi_2)}\geq [/mm] 1$ gilt.
Hier sollte ich dann wahrscheinlich irgendwie den Hinweis ausnutzen. Aber es gelingt mir nicht.

Über einen Tipp würde ich mich freuen.
Vielen Dank im voraus.

        
Bezug
MWS der Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 Mo 15.02.2016
Autor: fred97

1. Ich sehe auch nicht, wie Du  $ [mm] \frac{f(\xi_1)}{f(\xi_2)}\geq [/mm] 1 $ zeigen kannst. Nach dem Hinweis gilt "nur"

   $ [mm] \frac{f(\xi_1)}{f(\xi_2)}\geq [/mm] 1 $  oder  $ [mm] \frac{f(\xi_2)}{f(\xi_1)}\geq [/mm] 1 $

(Vielleicht hab ich auch nur Tomaten auf den Augen).

2. Hier eine Möglichkeit über Integration im [mm] \IR^2: [/mm]

Sei $Q:=[a,b] [mm] \times [/mm] [a,b]$ und $g(x,y):= [mm] \frac{f(x)}{f(y)}+\frac{f(y)}{f(x)} [/mm] $  für $(x,y) [mm] \in [/mm] Q$

Mit dem Hinweis haben wir $g [mm] \ge [/mm] 2$ auf $Q$, also

  [mm] $2*(b-a)^2=2*\lambda_2(Q)=\integral_{Q}^{}{2 d(x,y)} \le \integral_{Q}^{}{g(x,y) d(x,y)}=2*\integral_{Q}^{}{\frac{f(x)}{f(y)} d(x,y)}=2*\left(\int_a^b f(x)\, dx\right)\left(\int_a^b \frac{1}{f(y)}\, dy\right) [/mm] $

Das letzte "=" ist der Satz von Fubini.

3. Eine weitere Möglichkeit, die ohne den Hinweis auskommt:

Setze [mm] f_1(x):=\wurzel{f(x)} [/mm] und [mm] f_2:=\bruch{1}{f_1}. [/mm] Dann folgt mit der Cauchy-Schwarz- Ungleichung:

[mm] (b-a)^2=(\integral_{a}^{b}{f_1(x)f_2(x) dx})^2 \le (\integral_{a}^{b}{f_1(x)^2 dx})*(\integral_{a}^{b}{f_2(x)^2 dx}), [/mm]

woraus die gewünschte Ungleichung resultiert.

FRED

Bezug
                
Bezug
MWS der Integralrechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:41 Mo 15.02.2016
Autor: impliziteFunktion

Vielen Dank. Deine Lösungen gefallen mir sehr.

Ich hätte aber noch eine Frage zum vorletzten Gleichheitszeichen aus deiner 2. Möglichkeit:

[mm] $\integral_{Q}^{}{g(x,y) d(x,y)}=2\cdot{}\integral_{Q}^{}{\frac{f(x)}{f(y)} d(x,y)}$ [/mm]

Wie genau kommt dies zustande?

Wenn ich noch einpaar Zwischenschritte einfüge, erhalte ich doch:

[mm] $\integral_{Q}^{}{g(x,y) d(x,y)}=\integral_{Q}^{} \frac{f(x)}{f(y)}+\frac{f(y)}{f(x)}\, [/mm] d(x,y)$

Jetzt kann man die Linearität ausnutzen, aber wie man auf das gewünschte kommt, sehe ich leider nicht.
Oder soll das Gleichheitszeichen eigentlich ein [mm] $\leq$ [/mm] sein?

Edit:

Die Frage hat sich mittlerweile geklärt.
Vielen Dank.

Bezug
        
Bezug
MWS der Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Mo 15.02.2016
Autor: Gonozal_IX

Hiho,

auch wenn es letztendlich das gleiche ist, wie fred's Lösung, kann man das auch mit "normaler" [mm] $\IR^1$-Integration [/mm] lösen (und dadurch klärt sich auch deine Frage an fred):

Beginne mit der Ungleichung:

$ [mm] \frac{f(x)}{f(y)}+\frac{f(y)}{f(x)}\geq [/mm] 2 $

und Integriere beide Seiten erst nach x, dann nach y und du erhältst:

[mm] $\left(\int_a^b f(x) dx\right)\left(\int_a^b \frac{1}{f(y)} dy\right) [/mm] + [mm] \left(\int_a^b f(y) dy\right)\left(\int_a^b \frac{1}{f(x)} dx\right) \geq 2(b-a)^2$ [/mm]

Variablensubstitution auf der linken Seite liefert das Gewünschte.

Gruß,
Gono

Bezug
                
Bezug
MWS der Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:57 Mo 15.02.2016
Autor: impliziteFunktion

Hi,

was genau muss denn Substituiert werden? Ich sehe irgendwie keine Substitution die etwas ändern würde.

Ich möchte die beiden Integral-Produkte ja addieren, richtig?

Bezug
                        
Bezug
MWS der Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Mo 15.02.2016
Autor: Gonozal_IX

Hiho,

> was genau muss denn Substituiert werden? Ich sehe irgendwie
> keine Substitution die etwas ändern würde.
>  
> Ich möchte die beiden Integral-Produkte ja addieren,
> richtig?

ja. Mach dir mal klar, dass man die Integrationsvariable nennen kann, wie man möchte (rein formal ist das eben eine Substitution), d.h. es ist völlig schnuppe, ob ich

[mm] $\left(\int_a^b f(x) dx\right)$ [/mm] oder [mm] $\left(\int_a^b f(y) dy\right)$ [/mm] schreibe.

Angewendet auf die linke Seite ergibt das also:

[mm] $\left(\int_a^b f(x) dx\right)\left(\int_a^b \frac{1}{f(y)} dy\right) [/mm] + [mm] \left(\int_a^b f(y) dy\right)\left(\int_a^b \frac{1}{f(x)} dx\right) [/mm] = [mm] \left(\int_a^b f(x) dx\right)\left(\int_a^b \frac{1}{f(y)} dy\right) [/mm] + [mm] \left(\int_a^b f(x) dx\right)\left(\int_a^b \frac{1}{f(y)} dy\right) [/mm] = [mm] 2\left(\left(\int_a^b f(x) dx\right)\left(\int_a^b \frac{1}{f(y)} dy\right)\right) [/mm]

Und damit nach division durch 2 das Gewünschte.

Gruß,
Gono

Bezug
                                
Bezug
MWS der Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Mo 15.02.2016
Autor: impliziteFunktion

Vielen Dank. Damit hat sich meine Frage erledigt.
Jetzt wo du es sagst, ist es einleuchtend, dass es egal ist, was die Integrationsvariable ist, hat mich aber gerade etwas verwirrt. Ich werde es mir merken.

Vielen Dank euch für die Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]