matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMächtigkeit von Mengen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mengenlehre" - Mächtigkeit von Mengen
Mächtigkeit von Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mächtigkeit von Mengen: Aufgabe a,b,c
Status: (Frage) beantwortet Status 
Datum: 20:19 Sa 09.06.2007
Autor: Tvenna

Aufgabe
Für reelle Zahlen [mm] a,b\in\IR\setminus0 [/mm] definieren wir [mm] a\sim [/mm] b [mm] :\gdw [/mm] a*b>0.
Zeigen sie:
[mm] 1)\forall a\in\IR\setminus\{0\} [/mm] : a [mm] \sim [/mm] a
[mm] 2)\forall [/mm] a,b [mm] \in\IR\setminus\{0\} [/mm] : [mm] a\sim [/mm] b [mm] \Rightarrow [/mm] b [mm] \sim [/mm] a
[mm] 3)\forall [/mm] a,b,c [mm] \in\IR\setminus\{0\} [/mm] : a [mm] \sim [/mm] b [mm] \wedge [/mm] b [mm] \sim [/mm] c [mm] \Rightarrow [/mm] a [mm] \sim [/mm] c.

Hallo!
Ich habe folgende Aufgabe gestellt bekommen und komme nicht richtig voran.
Mengen und Mächtigkeit haben wir zum ersten mal, und ich weiss nicht so recht wie ich damit vorgehen muss.
zu 1) Das könnte man ja über die Umkehrfunktion machen, nur weiss ich nicht so recht wie man das machen soll. Nimmt man sich da einfach Mengen her?
zu 2) Da wollte ich auch zeigen, dass a [mm] \tob [/mm] bijektiv ist, dann ist auch [mm] f^{-1} b\toa [/mm] bijektiv, aber wieder hake ich an der Schreibweise und an der Umkehrfunktion...
zu 3) auch dies würde ich gerne mit der Bijektivität beweisen..
Ich habe leider wirklich noch keinen Plan wie ich daran gehen soll..
Hat jemand einen Tip oder ein Beispiel?
Viele Grüsse

        
Bezug
Mächtigkeit von Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Sa 09.06.2007
Autor: schachuzipus

Hallo Tvenna,

was willst du denn mit Funktionen und Bijektivität? [kopfkratz3]

Und wo ist der Bezug zu "Mächtigkeit von Mengen"? - hmm

M.E. sieht die Aufgaben schwer danach aus, dass du zeigen sollst, dass [mm] $\sim$ [/mm] eine Äquivalenzrelation auf [mm] $\IR\setminus\{0\}\times\IR\setminus\{0\}$ [/mm] ist.

Mal zu (a)

nach def [mm] \sim [/mm] gilt [mm] a\sim a\gdw a\cdot{}a=a^2>0 [/mm] und das gilt doch augenscheinlich für alle [mm] a\in\IR\setminus\{0\} [/mm]

zu (b) Stichwort "Kommutativität von [mm] \cdot [/mm] in [mm] \IR [/mm]

(c) die Transitivität kriegste auch hin - benutze einfach die def von [mm] \sim [/mm]


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]