matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenMannigfaltigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Mannigfaltigkeit
Mannigfaltigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mannigfaltigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:51 Mi 27.06.2012
Autor: Gnocchi

Aufgabe
Zeigen Sie: Die folgenden Menngen M sind 1-dimensionale Mannigfaltigkeiten.
a.) M:={x [mm] \in \IR^{3}|x_2^{2}-x_1-x_2)^{2}+2x_1=0, x_3^{2}+2 =x_2 [/mm] }
b.) M:={x [mm] \in \IR^{3}|x =(t,t^{3}+3,t^{2}) [/mm] für ein t [mm] \in \IR [/mm] }

Ich hab allgemein eine Frage wie ich an Aufgabe b.) rangeh, weil mich das t irgendwie verwirrt und uns gesagt wurde, dass wir hierfür den Satz über Karten brauchen und uns ein Beispiel im Skript anschauen sollen.
Da haben wir aber auch erst zunächst unser altes Kochrezept angewendet. Jedoch weiß ich auch nicht wie ich da mit dem t umgehen soll, weil wir eher nur so Beispiele wie in a.) hatten.
Hätte ich dann bei b.):
Df(x) = [mm] \pmat{ 1 & 3t^{2} & 2t } [/mm] => rang=1 und somit maximal => Mannigfaltigkeit.

        
Bezug
Mannigfaltigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Mi 27.06.2012
Autor: fred97

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Zeigen Sie: Die folgenden Menngen M sind 1-dimensionale
> Mannigfaltigkeiten.
>  a.) M:={x [mm]\in \IR^{3}|x_2^{2}-x_1-x_2)^{2}+2x_1=0, x_3^{2}+2 =x_2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> }
>  b.) M:={x [mm]\in \IR^{3}|x =(t,t^{3}+3,t^{2})[/mm] für ein t [mm]\in \IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> }
>  Ich hab allgemein eine Frage wie ich an Aufgabe b.)
> rangeh, weil mich das t irgendwie verwirrt und uns gesagt
> wurde, dass wir hierfür den Satz über Karten brauchen und
> uns ein Beispiel im Skript anschauen sollen.
>  Da haben wir aber auch erst zunächst unser altes
> Kochrezept angewendet. Jedoch weiß ich auch nicht wie ich
> da mit dem t umgehen soll, weil wir eher nur so Beispiele
> wie in a.) hatten.
>  Hätte ich dann bei b.):
>  Df(x) = [mm]\pmat{ 1 & 3t^{2} & 2t }[/mm] => rang=1 und somit

> maximal => Mannigfaltigkeit.


Das M in b) kannst Du auch so schreiben:


   [mm] M=\{x \in \IR^{3}|x_3=x_1^2, x_2=x_1^3+3\} [/mm]

FRED


Bezug
                
Bezug
Mannigfaltigkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:33 Mi 27.06.2012
Autor: Gnocchi


> Das M in b) kannst Du auch so schreiben:
>  
>
> [mm]M=\{x \in \IR^{3}|x_3=x_1^2, x_2=x_1^3+3\}[/mm]
>  
> FRED
>  

Okay, danke das hilft mir schon weiter. Das ergibt sich einfach aus den einzelnen Komponenten von x? Bloß, dass wir für t dann [mm] x_1 [/mm] einsetzen?
Dann haben wir:
f: [mm] \IR^{3} \to \IR [/mm] {2}
[mm] f(x_1,x_2,x_3) [/mm] = [mm] (x_1^{2}-x_3,x_1{3}+3-x_2) [/mm]
f [mm] \in C^{1}(\IR^{3},\IR^{2}), [/mm] denn f ist ein Polynom und Polynome sind differenzierbar.
Df(x)= [mm] \pmat{ 2x_1 & 0 & 0 \\ 3x_1 & 0 & 0 }. [/mm]
Dann ist rang Df(x) [mm] \ge [/mm] rang [mm] \pmat{ 2x_1 & 0 \\ 3x_1 & 0 } [/mm]
Dieser ist maximal, wenn [mm] x_1 [/mm] ungleich 0 ist. Also ist das genau dann eine Mannigfaltigkeit, wenn [mm] x_1 [/mm] ungleich 0 ist.


Bezug
                        
Bezug
Mannigfaltigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:41 Mi 27.06.2012
Autor: Gnocchi

Upps, das Obere war eigentlich als Frage gedacht.

Bezug
                        
Bezug
Mannigfaltigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Fr 29.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]