matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseMarkov-Ketten/ -Prozesse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "stochastische Prozesse" - Markov-Ketten/ -Prozesse
Markov-Ketten/ -Prozesse < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Markov-Ketten/ -Prozesse: Stationarität
Status: (Frage) beantwortet Status 
Datum: 09:07 Mi 28.10.2009
Autor: bedekkee

Aufgabe
Eine Verteilung [mm] $\pi^{\star}$ [/mm] heißt stationär (bezüglich der Markow-Kette), falls für alle j gilt

    [mm] \pi^{\star}_j [/mm] = [mm] \sum_{i \in S} \pi^{\star}_i p_{ij}. [/mm]

entnommen: []Markov-Kette - Wikipedia

Hallo,

ich habe damit leider so meine Schwierigkeiten.

1) was genau beschreibt [mm] $\pi_i$ [/mm] bzw. [mm] $\pi_j$ [/mm] ?
.. ist das eine Dichte zu einem Zustand $i$ bzw. $j$ die mir angibt wie wahrscheinlich der Übergang zu einem anderen Zustand im Zustandsraum ist?

2) was genau heisst stationär bzgl der Markov-Kette? [Interpretation der Formel]
Das Produkt aus einer Dichte zu einem Zustand $i$ und der W'keit des Übergangs in den Zustand $j$ aufsummiert über alle mgl Zustände soll gleich der Dichte des Zustands $j$ sein, hä?
... das macht für mich irgentwie keinen Sinn!

Kann mir da jemand weiterhelfen?


Mfg



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Markov-Ketten/ -Prozesse: Antwort
Status: (Antwort) fertig Status 
Datum: 10:21 Mi 28.10.2009
Autor: felixf

Hallo!

> Eine Verteilung [mm]\pi^{\star}[/mm] heißt stationär (bezüglich
> der Markow-Kette), falls für alle j gilt
>  
> [mm]\pi^{\star}_j[/mm] = [mm]\sum_{i \in S} \pi^{\star}_i p_{ij}.[/mm]
>
> entnommen: []Markov-Kette - Wikipedia
>  
> Hallo,
>
> ich habe damit leider so meine Schwierigkeiten.
>  
> 1) was genau beschreibt [mm]\pi_i[/mm] bzw. [mm]\pi_j[/mm] ?
>  .. ist das eine Dichte zu einem Zustand [mm]i[/mm] bzw. [mm]j[/mm] die mir
> angibt wie wahrscheinlich der Übergang zu einem anderen
> Zustand im Zustandsraum ist?

Du hast die Markovkette ja auf dem Zustandsraum [mm] $\{ 1, \dots, n \}$. [/mm] Jeder Zustand der Markovkette ist eine Wahrscheinlichkeitsverteilung auf diesem Zustandsraum -- sprich du hast zu jedem $i [mm] \in \{ 1, \dots, n \}$ [/mm] eine Wahrscheinlichkeit [mm] $\pi_i$ [/mm] gegeben: es gilt [mm] $\pi_i \ge [/mm] 0$ fuer alle $i$ und [mm] $\sum_{i=1}^n \pi_i [/mm] = 1$.

> 2) was genau heisst stationär bzgl der Markov-Kette?

Die Uebergangsmatrix [mm] $(p_{ij})_{ij}$ [/mm] gibt ja an, wie ein Zustand in den naechsten ueberfuehrt wird. Ein Zustand heisst nun stationaer, wenn er durch die Uebergangsmatrix in sich selber ueberfuehrt wird, also sich nicht veraendert.

(Dies sind sozusagen bestimmte Eigenvektoren zum Eigenwert 1 der Matrix: naemlich die deren Komponenten alle nicht-negativ sind und sich zu 1 summieren -- also die, die Zustaende sind.)

> [Interpretation der Formel]
>  Das Produkt aus einer Dichte zu einem Zustand [mm]i[/mm] und der
> W'keit des Übergangs in den Zustand [mm]j[/mm] aufsummiert über
> alle mgl Zustände soll gleich der Dichte des Zustands [mm]j[/mm]
> sein, hä?

Wenn du die Matrix [mm] $(p_{ij})_{ij}$ [/mm] als $P$ und den Vektor [mm] $(\pi_1^\ast, \dots, \pi_n^\ast)$ [/mm] als [mm] $\pi^\ast$ [/mm] bezeichnest, steht da einfach [mm] $\pi^\ast [/mm] = [mm] \pi^ast [/mm] P$.

LG Felix


Bezug
                
Bezug
Markov-Ketten/ -Prozesse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:29 Mi 28.10.2009
Autor: bedekkee


> Hallo!
>  
> > Eine Verteilung [mm]\pi^{\star}[/mm] heißt stationär (bezüglich
> > der Markow-Kette), falls für alle j gilt
>  >  
> > [mm]\pi^{\star}_j[/mm] = [mm]\sum_{i \in S} \pi^{\star}_i p_{ij}.[/mm]
> >
> > entnommen: []Markov-Kette - Wikipedia
>  
> >  

> > Hallo,
> >
> > ich habe damit leider so meine Schwierigkeiten.
>  >  
> > 1) was genau beschreibt [mm]\pi_i[/mm] bzw. [mm]\pi_j[/mm] ?
>  >  .. ist das eine Dichte zu einem Zustand [mm]i[/mm] bzw. [mm]j[/mm] die
> mir
> > angibt wie wahrscheinlich der Übergang zu einem anderen
> > Zustand im Zustandsraum ist?
>  
> Du hast die Markovkette ja auf dem Zustandsraum [mm]\{ 1, \dots, n \}[/mm].
> Jeder Zustand der Markovkette ist eine
> Wahrscheinlichkeitsverteilung auf diesem Zustandsraum --

soweit so klar!

> sprich du hast zu jedem [mm]i \in \{ 1, \dots, n \}[/mm] eine
> Wahrscheinlichkeit [mm]\pi_i[/mm]

das verstehe ich nicht. Zuerst soll jeder Zustand eine Wahrscheinlichkeitsverteilung sein und dann plötzlich doch wieder nur eine Wahrscheinlichkeit?

> gegeben: es gilt [mm]\pi_i \ge 0[/mm] fuer
> alle [mm]i[/mm] und [mm]\sum_{i=1}^n \pi_i = 1[/mm].
>  
> > 2) was genau heisst stationär bzgl der Markov-Kette?
>
> Die Uebergangsmatrix [mm](p_{ij})_{ij}[/mm] gibt ja an, wie ein
> Zustand in den naechsten ueberfuehrt wird. Ein Zustand
> heisst nun stationaer, wenn er durch die Uebergangsmatrix
> in sich selber ueberfuehrt wird, also sich nicht
> veraendert.
>  
> (Dies sind sozusagen bestimmte Eigenvektoren zum Eigenwert
> 1 der Matrix: naemlich die deren Komponenten alle
> nicht-negativ sind und sich zu 1 summieren -- also die, die
> Zustaende sind.)
>  
> > [Interpretation der Formel]
>  >  Das Produkt aus einer Dichte zu einem Zustand [mm]i[/mm] und der
> > W'keit des Übergangs in den Zustand [mm]j[/mm] aufsummiert über
> > alle mgl Zustände soll gleich der Dichte des Zustands [mm]j[/mm]
> > sein, hä?
>  
> Wenn du die Matrix [mm](p_{ij})_{ij}[/mm] als [mm]P[/mm] und den Vektor
> [mm](\pi_1^\ast, \dots, \pi_n^\ast)[/mm] als [mm]\pi^\ast[/mm] bezeichnest,
> steht da einfach [mm]\pi^\ast = \pi^ast P[/mm].

was soll "st" sein?

>  
> LG Felix
>  


Bezug
                        
Bezug
Markov-Ketten/ -Prozesse: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Mi 28.10.2009
Autor: felixf

Hallo!

> > sprich du hast zu jedem [mm]i \in \{ 1, \dots, n \}[/mm] eine
> > Wahrscheinlichkeit [mm]\pi_i[/mm]
>
> das verstehe ich nicht. Zuerst soll jeder Zustand eine
> Wahrscheinlichkeitsverteilung sein und dann plötzlich doch
> wieder nur eine Wahrscheinlichkeit?

Jedes Element eines Zustands ist eine Wahrscheinlichkeit. Der Zustand selber ist eine Wahrscheinlichkeitsverteilung.

Eine Wahrscheinlichkeitsverteilung $W$ auf einer endlichen Menge [mm] $\{ 1, \dots, n \}$ [/mm] kannst du doch einfach als Folge $W = [mm] (w_1, \dots, w_n)$ [/mm] schreiben, mit [mm] $w_i [/mm] = [mm] \IP(i)$. [/mm]

Hier heisst $W$ halt [mm] $\pi$ [/mm] und [mm] $w_i$ [/mm] gleich [mm] $\pi_i$. [/mm]

> > Wenn du die Matrix [mm](p_{ij})_{ij}[/mm] als [mm]P[/mm] und den Vektor
> > [mm](\pi_1^\ast, \dots, \pi_n^\ast)[/mm] als [mm]\pi^\ast[/mm] bezeichnest,
> > steht da einfach [mm]\pi^\ast = \pi^ast P[/mm].
>  
> was soll "st" sein?

Ein Tippfehler. Gemeint ist [mm] $\pi^\ast [/mm] = [mm] \pi^\ast [/mm] P$.

LG Felix


Bezug
                
Bezug
Markov-Ketten/ -Prozesse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Mi 28.10.2009
Autor: bedekkee

Aufgabe
$ [mm] \pi^{\star}_j [/mm] $ = $ [mm] \sum_{i \in S} \pi^{\star}_i p_{ij}. [/mm] $  

> Die Uebergangsmatrix $ [mm] (p_{ij})_{ij} [/mm] $ gibt ja an, wie ein Zustand in
> den naechsten ueberfuehrt wird. Ein Zustand heisst nun stationaer,
> wenn er durch die Uebergangsmatrix in sich selber ueberfuehrt  
> wird, also sich nicht veraendert.

wie drückt sich das denn genau in der Formel aus?

Für mich sagt die Formel nur, dass die W'keiten einzelner Zustände $i$ mal die Wahrscheinlichkeit eines Übergang von Zustand $i$ in den Zustand $j$ aufsummiert über alle mgl Zustände gleich der Wahrscheinlichkeit des Zustands $j$ ist.
Woraus ergibt sich jetzt diese Aussage:

> durch die Uebergangsmatrix in sich selber ueberfuehrt wird, also
> sich nicht veraendert.

Bezug
                        
Bezug
Markov-Ketten/ -Prozesse: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Mi 28.10.2009
Autor: felixf

Hallo!

> [mm]\pi^{\star}_j[/mm] = [mm]\sum_{i \in S} \pi^{\star}_i p_{ij}.[/mm]
> > Die Uebergangsmatrix [mm](p_{ij})_{ij}[/mm] gibt ja an, wie ein
> Zustand in
> > den naechsten ueberfuehrt wird. Ein Zustand heisst nun
> stationaer,
> > wenn er durch die Uebergangsmatrix in sich selber
> ueberfuehrt  
> > wird, also sich nicht veraendert.
>  
> wie drückt sich das denn genau in der Formel aus?

Na, der rechte Teil der Formel beschreibt die neue Wahrscheinlichkeit fuer $j$ im neuen Zustand. Und diese Wahrscheinlichkeit soll halt gleich der Wahrscheinlichkeit fuer $j$ im alten Zustand sein, und das ist [mm] $\pi^\ast_j$. [/mm]

> Für mich sagt die Formel nur, dass die W'keiten einzelner
> Zustände [mm]i[/mm] mal die Wahrscheinlichkeit eines Übergang von
> Zustand [mm]i[/mm] in den Zustand [mm]j[/mm] aufsummiert über alle mgl
> Zustände gleich der Wahrscheinlichkeit des Zustands [mm]j[/mm] ist.

Ja.

> Woraus ergibt sich jetzt diese Aussage:
>  
> > durch die Uebergangsmatrix in sich selber ueberfuehrt wird,
> > also
> > sich nicht veraendert.  

Dass da [mm] $\pi_j^\ast$ [/mm] auf der linken Seite steht.

LG Felix


Bezug
                                
Bezug
Markov-Ketten/ -Prozesse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:39 Do 29.10.2009
Autor: bedekkee


> > [mm]\pi^{\star}_j[/mm] = [mm]\sum_{i \in S} \pi^{\star}_i p_{ij}.[/mm]
> > > Die Uebergangsmatrix [mm](p_{ij})_{ij}[/mm] gibt ja an, wie ein
> > Zustand in
> > > den naechsten ueberfuehrt wird. Ein Zustand heisst nun
> > stationaer,
> > > wenn er durch die Uebergangsmatrix in sich selber
> > ueberfuehrt  
> > > wird, also sich nicht veraendert.
>  >  
> > wie drückt sich das denn genau in der Formel aus?
>  
> Na, der rechte Teil der Formel beschreibt die neue
> Wahrscheinlichkeit fuer [mm]j[/mm] im neuen Zustand. Und diese
> Wahrscheinlichkeit soll halt gleich der Wahrscheinlichkeit
> fuer [mm]j[/mm] im alten Zustand sein, und das ist [mm]\pi^\ast_j[/mm].
>  
> > Für mich sagt die Formel nur, dass die W'keiten einzelner
> > Zustände [mm]i[/mm] mal die Wahrscheinlichkeit eines Übergang von
> > Zustand [mm]i[/mm] in den Zustand [mm]j[/mm] aufsummiert über alle mgl
> > Zustände gleich der Wahrscheinlichkeit des Zustands [mm]j[/mm] ist.
>
> Ja.
>  
> > Woraus ergibt sich jetzt diese Aussage:
>  >  
> > > durch die Uebergangsmatrix in sich selber ueberfuehrt wird,
> > > also
> > > sich nicht veraendert.  
>
> Dass da [mm]\pi_j^\ast[/mm] auf der linken Seite steht.

Um sicher zugehen dass ich das jetzt verstanden habe versuche ich das nochmal in eigenen Worten:

Stationarität bedeutet also, dass der Zustand $j$ im Zeitpunkt $t+1$ mit der gleichen W'keit wie im Zeitpunkt $t$ der Markovkette auftritt. Wobei der Übergang auch durchaus zu einem anderen Zustand erfolgen kann, es soll also "NUR" die Wahrscheinlichkeit "gleich sein".

Ist das so korrekt?


Mfg


Bezug
                                        
Bezug
Markov-Ketten/ -Prozesse: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Do 29.10.2009
Autor: felixf

Hallo!

> Um sicher zugehen dass ich das jetzt verstanden habe
> versuche ich das nochmal in eigenen Worten:
>
> Stationarität bedeutet also, dass der Zustand [mm]j[/mm] im
> Zeitpunkt [mm]t+1[/mm] mit der gleichen W'keit wie im Zeitpunkt [mm]t[/mm]
> der Markovkette auftritt. Wobei der Übergang auch durchaus
> zu einem anderen Zustand erfolgen kann, es soll also "NUR"
> die Wahrscheinlichkeit "gleich sein".
>
> Ist das so korrekt?

Ja, das stimmt so.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]