matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseMarkov-Ketten Rekurenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "stochastische Prozesse" - Markov-Ketten Rekurenz
Markov-Ketten Rekurenz < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Markov-Ketten Rekurenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:09 Fr 28.03.2014
Autor: Domsi

Aufgabe
Gegeben ist folgende Matrix:

[mm]\begin{pmatrix}\frac{1}{2} && \frac{1}{4} && \frac{1}{4} && 0 \\ 0 && 0 && \frac{1}{2} && \frac{1}{2} \\ 0 && \frac{1}{3} && \frac{2}{3} && 0 \\ \frac{1}{4} && \frac{1}{2} && \frac{1}{4} && 0\end{pmatrix}[/mm]

Aufgabe: Überprüfen Sie alle Zustände auf Rekurrenz/Transienz.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.onlinemathe.de/forum/Markov-Ketten-RekurenzTransienz (Leider keine Antwort erhalten, deshalb will ich es hier versuchen).


Für meine nächste Klausur beschäftige ich mit Markov-Ketten. Beim Punkt Rekurrenz/Transienz stoße ich dabei auf ein Problem. Grundsätzlich ist mir bekannt, wie man erkennt ob ein Zustand Rekurrent oder Transient ist. Rekurrenz bedeutet ja, wenn die Summe der einzelnen Rückkehrwahrscheinlichkeiten gleich 1 ist, dann ist dieser Zustand Transient (http://de.wikipedia.org/wiki/Markow-Kette#Rekurrent_und_transient):

$rekurrent [mm] \iff f_i [/mm] = 1$ wobei [mm] $f_i [/mm] = [mm] \sum_{n=1}^{\infty} f_i^{n}$ [/mm]

Ist die W! < 1, dann ist Zustand transient.

Bei der Anwendung komme ich leider nicht klar:

Eines ist klar, wenn ich z.B. Zustand 0 W! 1 verlasse, und nie wieder in diesen Zustand gelangen kann, dann ist dieser Zustand sicher transient. Was ist aber, wenn ich einen Zustand verlasse (z.B. von Zustand 0 auf 1) und irgendwann zurückkehren kann (z.B. von Zustand 1 auf 2 und dann 0), ist dieser Zustand zwingend rekurrent oder kann auch dieser transient sein? D.h. muss ein Zustand, zu welchen ich zurückkehren kann (z.B. in 3 Schritten), immer rekurrent sein?


Vielleicht können wir mein Problem anhand des oben angegebenen Beispiels lösen. Was ich bisher habe:

Die Matrix ist irreduzibel, da alle Zustände miteinander kommunizieren (Kette besteht aus 1 Klasse). Nun sollen alle Zustände auf Rekurrenz und Transienz geprüft werden.

Für den Zustand 2 ist es mir gelungen die Rekurrenz zu zeigen (Wege: 2-2, 2-1-2, 2-1-2-2, 2-1-2-2-2,...):
$ [mm] f_i [/mm] = [mm] \frac{2}{3} [/mm] + [mm] \frac{1}{3} \cdot \frac{1}{2} \cdot \sum_{n=1}^{\infty} (\frac{2}{3})^{n} [/mm] = 1$

Für die Zustände 0,1,3 konnte ich keinen Weg finden, der mir eine W! von 1 liefert. Heißt das nun, dass die Zustände 0,1,3 transient sind, oder MÜSSEN die Zustände rekurrent sein, da ich ja in jeden Zustand zurückkehren kann?

Kann mir jemand helfen? Falls ich falsch liege, und die Zustände 0,1,3 sehr wohl rekurrent sind, könnte mir jemand ein Beispiel für einen dieser Zustände geben? (Damit ich sehe und verstehen kann, wie die Überprüfung genau läuft)

Vielen Dank und LG
Domsi


        
Bezug
Markov-Ketten Rekurenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 02.04.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]