matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikMartingal/Martingalmaß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Finanzmathematik" - Martingal/Martingalmaß
Martingal/Martingalmaß < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Martingal/Martingalmaß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 Mo 19.07.2004
Autor: Astrid

Ich habe diese Frage in keinem weiteren Forum gestellt.

Hallo Stefan, hallo an alle anderen Spezialisten ;-),

ich kämpfe gerade mit dem Vorkurs zur Finanzmathematik des letzten WS in Darmstadt....

Im Binomialmodell wird das "Martingalmaß" definiert als dasjenige, für das der Erwartungswert des morgigen Aktienkurses risikoneutral ist.  (Skript S.10)
Im Skript des Vorkurses wird auf S. 13 das "Martingal" bzgl. einer Filtration eingeführt als stochastischer Prozeß mit bestimmten Eigenschaften.
Ich sehe noch nicht ganz die "Gemeinsamkeit" der beiden Begriffe in den verschiedenen Zusammenhängen. Kannst du mir dabei vielleicht helfen?

Vielen Dank
Astrid


P.S. Muß ich immer eine Fälligkeit angeben?
Gruß, A.

        
Bezug
Martingal/Martingalmaß: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Di 20.07.2004
Autor: Stefan

Liebe Astrid!

Der Zusammenhang ist der Folgende:

Das Martingalmaß $Q$ ist im Binomialmodell dasjenige Maß, bezüglich dessen der Prozess

[mm] $\left( \frac{S_t}{B_t}\right)_{t=0,1}$ [/mm]

mit

[mm] $S_0=s$, [/mm]

[mm] $S_1=sZ$ [/mm] (zur Definition von $Z$ vergleiche das Skript),

[mm] $B_0=1$, [/mm]

[mm] $B_1=1+R$, [/mm]

also der sogenannte diskontierte Preisprozess der Aktie ("diskontieren" im Sinne von "abzinsen"), bezüglich der kanonischen Filtration [mm] (${\cal F}_0 [/mm] = [mm] \sigma(S_0)$ [/mm] ,  [mm] ${\cal F}_1 [/mm] = [mm] \sigma(S_0,S_1)$) [/mm] ein Martingal ist.

Denn was ist denn zu überprüfen, damit [mm] $\left( \frac{S_t}{B_t}\right)_{t=0,1}$ [/mm] ein Martingal ist?

Die Messbarkeitsbedingungen?

Nein, die gelten nach Konstruktion der Filtration.

Die Integrabilitätsbedingungen?

Nein, [mm] $S_1$ [/mm] nimmt nur zwei Werte an, der Rest ist konstant.

Also nur die "Martingalbedingung".

Und diese beschränkt sich hier auf eine Gleichung:

[mm] $\frac{S_0}{B_0} [/mm] = [mm] E^Q \left[ \frac{S_1}{B_1}\, \vert \, {\cal F}_0 \right]$. [/mm]

Setzt man ein und Zieht die Konstante [mm] $\frac{1}{1+R}$ [/mm] vor die bedingte Erwartung, so folgt:

[mm] $S_0 =\frac{1}{1+R}\, E^Q \left[ S_1\, \vert \, S_0 \right]$. [/mm]

(Oder auch, faktorisiert:

$s = [mm] \frac{1}{1+R}\, E^Q \left[ S_1\, \vert \, S_0 =s\right]$.) [/mm]

Und dies war genau die Bedingung dafür, dass $Q$ ein Martingalmaß ist.

Alles klar? :-)

Liebe Grüße
Stefan





Bezug
                
Bezug
Martingal/Martingalmaß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Mi 21.07.2004
Autor: Astrid

Hallo Stefan,

vielen Dank für die ausführliche Antwort!
Das heißt, in der Definition des Martingals auf dem W-Raum (Vorkurs 1, S.13) wäre dann das Wahrscheinlichkeitsmaß P sozusagen das Martingalmaß?

Viele Grüße,
Astrid

Bezug
                        
Bezug
Martingal/Martingalmaß: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 Mi 21.07.2004
Autor: Stefan

Liebe Astrid!

>  Das heißt, in der Definition des Martingals auf dem W-Raum
> (Vorkurs 1, S.13) wäre dann das Wahrscheinlichkeitsmaß P
> sozusagen das Martingalmaß?

Nein, das würde ich so nicht sagen. Klar, man könnte es so nennen, und die Bezeichnung würde im Prinzip auch Sinn machen. Aber eigentlich ist der Namen Martingalmaß nur im Kontext der Finanzmathematik gebräuchlich (mit dem diskontierten Preisprozess als Martingal), während der Martingalbegriff auch im allgemeineren (stochastischen) Rahmen eine große Bedeutung hat. Insofern wäre ich in diesem allgemeineren Rahmen mit der Bezeichnung "Martingalmaß" vorsichtig.

Liebe Grüße
Stefan


Bezug
                                
Bezug
Martingal/Martingalmaß: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 Mi 21.07.2004
Autor: Astrid

Ok, vielen Dank. Ich denke, ich habe es soweit verstanden.
Ich komme bestimmt bald mit neuen Fragen auf dich zu... Habe bald die Prüfung...

Gruß,
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]