matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieMaßfortsetzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maßtheorie" - Maßfortsetzung
Maßfortsetzung < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maßfortsetzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:23 Do 26.12.2013
Autor: luise1

Aufgabe
Sei [mm] \Omega= \IR [/mm] und M:={ [a,b] [mm] \cap \IQ [/mm] : a [mm] \le [/mm] b in [mm] \IQ [/mm] } Auf M sei eine Mengenfunktion gegeben durch [mm] \mu [/mm] ([a,b] [mm] \cap \IQ):= [/mm] {1 falls a=b ; [mm] \infty [/mm] sonst } dabei sei a [mm] \le [/mm] b in [mm] \IQ [/mm]
a) Geben Sie eine Fortsetzung von [mm] \mu [/mm] zu einem Maß [mm] \nu [/mm] auf [mm] \sigma(M) [/mm] an. (mit Begründung)
b) Gibt es noch weitere Maße auf [mm] \Sigma(M) [/mm] ,die auf M mit [mm] \mu [/mm] übereinstimmen?

Halli Hallo und frohe Weihnachten,

es gibt nichts schöneres als an Weihnachten zu rechnen ;)
nee naja wie auch immer...^^ jedenfalls habe ich noch so meine Probleme mit dem Maßfortsetzungssatz. Die Lösung habe ich zu der Aufgabe und zwar wird bei der a) das Zählmaß genannt. Klar bei einer einelementigen Menge, also a=b kommt eins heraus wie beim Zählmaß. Das verstehe ich aber wieso "sonst" unendlich? Zum Beispiel bei dem Intervall [2,5]=3 (Zählmaß) und nicht gleich unendlich...?? Bei der b) wählt man dann irgendwie das Dirac Maß und sagt:
[mm] \delta_{x_{i} } \sigma(M)->[0,\infty] [/mm] A--> [mm] \delta_{x_i} [/mm] (A) = { 1 falls [mm] x_{i} }\in [/mm] A oder 0 falls  [mm] x_{i} \not\in [/mm] A mit [mm] x_{i} \in \IQ [/mm]
Das verstehe ich leider nicht. Würd mich sehr über Hilfe freuen. Danke schnomal.

Liebe Grüße
luise1

        
Bezug
Maßfortsetzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:29 Do 26.12.2013
Autor: vivo

Hallo,

Du sagst Du hast die Lösung. Es wäre sehr hilfreich wenn Du diese eintippen könntest.

Grüße

Bezug
                
Bezug
Maßfortsetzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Do 26.12.2013
Autor: luise1

Hallo,

habe ich doch...oder was meinst du? Also die Lösung ist mit in meiner Frage formuliert....

LG

Bezug
        
Bezug
Maßfortsetzung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Do 26.12.2013
Autor: fred97


> Sei [mm]\Omega= \IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

und M:={ [a,b] [mm]\cap \IQ[/mm] : a [mm]\le[/mm] b in [mm]\IQ[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

> Auf M sei eine Mengenfunktion gegeben durch [mm]\mu[/mm] ([a,b] [mm]\cap \IQ):=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> {1 falls a=b ; [mm]\infty[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

sonst } dabei sei a [mm]\le[/mm] b in [mm]\IQ[/mm]

>  a) Geben Sie eine Fortsetzung von [mm]\mu[/mm] zu einem Maß [mm]\nu[/mm]
> auf [mm]\sigma(M)[/mm] an. (mit Begründung)
>  b) Gibt es noch weitere Maße auf [mm]\Sigma(M)[/mm] ,die auf M mit
> [mm]\mu[/mm] übereinstimmen?
>  Halli Hallo und frohe Weihnachten,
>  
> es gibt nichts schöneres als an Weihnachten zu rechnen ;)
>  nee naja wie auch immer...^^ jedenfalls habe ich noch so
> meine Probleme mit dem Maßfortsetzungssatz. Die Lösung
> habe ich zu der Aufgabe und zwar wird bei der a) das
> Zählmaß genannt. Klar bei einer einelementigen Menge,
> also a=b kommt eins heraus wie beim Zählmaß. Das verstehe
> ich aber wieso "sonst" unendlich? Zum Beispiel bei dem
> Intervall [2,5]=3 (Zählmaß) und nicht gleich
> unendlich...??



Hä ? [2,5] hat unendlich viele Elemente, also ist das Zählmaß dieser Menge = [mm] \infty. [/mm]





> Bei der b) wählt man dann irgendwie das
> Dirac Maß und sagt:
>  [mm]\delta_{x_{i} } \sigma(M)->[0,\infty][/mm] A--> [mm]\delta_{x_i}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> (A) = { 1 falls [mm]x_{i} }\in[/mm] A oder 0 falls  [mm]x_{i} \not\in[/mm] A
> mit [mm]x_{i} \in \IQ[/mm]
>  Das verstehe ich leider nicht.


Ich auch nicht !

Ist x fest und A=[x+1,x+1], so ist [mm] \mu(A)=1, [/mm] aber [mm] \delta_x(A)=0. [/mm]

FRED


> Würd
> mich sehr über Hilfe freuen. Danke schnomal.
>  
> Liebe Grüße
>  luise1


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]