matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperMathematische Schreibweise
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Mathematische Schreibweise
Mathematische Schreibweise < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mathematische Schreibweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Mi 05.10.2011
Autor: Zukku

Aufgabe
Zeigen Sie, dass eine Halbgruppe H genau dann eine Gruppe ist, wenn für jedes a [mm] \in [/mm] H gilt: aH=Ha=H.

Nun, ich habe diese Schreibweise noch nie gesehen. Was heißt aH?
Steht das H dann für ein beliebiges Element aus der Gruppe?

        
Bezug
Mathematische Schreibweise: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Mi 05.10.2011
Autor: Diophant

Hallo,

normalerweise ist das die Schreibweise für die Links- bzw. Rechtsnebenklassen einer Untergruppe H. In diesem Zusammenhang kann man aber nicht von Nebenklassen sprechen, da H ja zunächst einfach eine Halbgruppe ist. aH bedeutet dennoch im Prinzip das gleiche: die Menge aller ah mit [mm] h\in [/mm] H und für die Verknüpfung von rechts sinngemäß das gleiche.

Hilft dir das weiter?

Gruß, Diophant

Bezug
                
Bezug
Mathematische Schreibweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 Do 06.10.2011
Autor: Zukku

Hmm, ich bin mir nicht sicher, ob ich das richtig verstanden habe.


Heißt die Gleichung, dass für ein fixes a die Menge der a-fachen von links (im Bezug auf die Verknüpfung) jedes Elementes aus den selben Elementen wie die Menge der a-fachen von rechts jedes Elementes besteht, und diese Menge gleich der  fraglichen Halbgruppe/Gruppe ist?

Bezug
                        
Bezug
Mathematische Schreibweise: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Do 06.10.2011
Autor: fred97


> Hmm, ich bin mir nicht sicher, ob ich das richtig
> verstanden habe.
>  
>
> Heißt die Gleichung, dass für ein fixes a die Menge der
> a-fachen von links (im Bezug auf die Verknüpfung) jedes
> Elementes aus den selben Elementen wie die Menge der
> a-fachen von rechts jedes Elementes besteht, und diese
> Menge gleich der  fraglichen Halbgruppe/Gruppe ist?


H ist eine Halbgruppe. Für $a [mm] \in [/mm] H$ ist

               [mm] $aH=\{ah:h \in H\}$ [/mm] und  [mm] $Ha=\{ha:h \in H\}$. [/mm]

Zeigen sollst Du:

H ist eine Gruppe   [mm] \gdw [/mm] $aH=H=Ha$  für jedes a $ [mm] \in [/mm] $ H

FRED




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]