matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrix-Umformungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Matrix-Umformungen
Matrix-Umformungen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix-Umformungen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:58 Mo 11.02.2008
Autor: antoni1

Aufgabe
0 = [mm] v^{T} (\bruch{1}{2} X^{T} X)^{-1} [/mm] (2 [mm] X^{T} [/mm] y - [mm] \lambda [/mm] v)

das ganze nach [mm] \lambda [/mm] auflösen, wobei
X : Matrix
v : Vektor
y : Vektor
[mm] \lambda [/mm] : Lagrange-Multiplikator

Hi!

Nach mehreren Rechenschritten bin ich nun an oben genannten Punkt gekommen. Hier weiß ich nicht mehr weiter, es soll hier jetzt nach [mm] \lambda [/mm] aufgelöst werden. Wahrscheinlich scheitere ich auch daran, dass ich schon seit Ewigkeiten keine Matrizen mehr angefasst habe.

Danke für jede Hilfe
Anton

        
Bezug
Matrix-Umformungen: ursprüngliche Aufgabenstellung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Mo 11.02.2008
Autor: Loddar

Hallo antoni!


Ich denke mal, dass es auch sehr hilfreich wäre, wenn Du uns auch die ursprüngliche Aufgabenstellung verraten und hier posten würdest.


Gruß
Loddar


Bezug
                
Bezug
Matrix-Umformungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 Mo 11.02.2008
Autor: antoni1

Die ursprüngliche Aufgabenstellung ist:

-2(y - [mm] Xb)^{T}X [/mm] + [mm] \lambda v^{T}=0 [/mm] nach [mm] \lambda [/mm] aufzulösen, wobei [mm] v^{T} [/mm] b = 0.

Nach transponieren der obigen Gleichung erhält man
[mm] -2X^{T} [/mm] (y - X b) + [mm] \lambda [/mm] v = 0

[mm] -2X^{T}y [/mm] + [mm] 2X^{T}X [/mm] b + [mm] \lambda [/mm] v = 0

[mm] 2X^{T}X [/mm] b = [mm] 2X^{T}y [/mm] - [mm] \lambda [/mm] v

falls [mm] X^{T}X [/mm] invertierbar, dann
b [mm] =\bruch{1}{2}(X^{T}X)^{-1} (2X^{T}y [/mm] - [mm] \lambda [/mm] v)
und da  [mm] v^{T} [/mm] b = 0 erhält man
0 = [mm] v^{T} [/mm] b = [mm] v^{T} \bruch{1}{2}( X^{T} X)^{-1} [/mm] (2 [mm] X^{T} [/mm] y - [mm] \lambda [/mm] v)


Bezug
        
Bezug
Matrix-Umformungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Mi 13.02.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]