matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeMatrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Matrix
Matrix < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:54 Do 06.10.2011
Autor: FMX87

Aufgabe
Die Frage stellt sich mir selbst:
Angenommen man soll die Lösungen folgender Matrizen berechnen:

Matrix 1:
[mm] x_{1}| x_{2}| x_{3} [/mm]
[mm] \pmat{ 1 & 2&3&5 \\ 4 & 5&6&7\\0&0&0&0} [/mm]

Matrix2:

[mm] x_{1}| x_{3}| x_{2} [/mm]
[mm] \pmat{ 1 & 2&3&5 \\ 4 & 5&6&7\\0&0&0&0} [/mm]

Hallo!

In beiden Matrizen ist die Lösungsmenge abhänig von einer Variablen. Wegen der Nullzeile.

zu Matrix1:

Muss man hier [mm] x_{3} [/mm] als Variable verwenden?

zu Matrix2:

Hier habe ich [mm] x_{2} [/mm] und [mm] x_{3} [/mm] vertauscht. Muss ich deswegen [mm] x_{2} [/mm] als freie Variable annehemen, weil es am Ende steht?


Im allgemeinen müsste es doch in so einem Fall egal sein, nach welcher Variable man auflöst, oder? Man muss sich nur für eine entscheiden?
Wäre nett wenn mir jemand weiterhelfen könnte.

gruß



        
Bezug
Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 10:15 Do 06.10.2011
Autor: Schadowmaster

moin FMX,

In deinem Fall hast du in jedem Punkt recht.
Du kannst hier eine der Variablen beliebig wählen und danach auflösen.
Aber, wie gesagt, nur in deinem Fall.
Ein Fall, wo das nicht geht, wäre diese Matrix:
[mm] $\pmat{1 & 2 & 3 & 4 \\ 5 & 10 & 6 & 7 \\ 0 & 0 & 0 & 0 }$ [/mm]

Löst man dieses LGS mit Gauß auf (ich hoffe der Gauß-Algorithmus sagt dir was^^), dann passiert folgendes:

1. zieht man von er zweiten Zeile 5x die erste ab ergibt sich:
-> [mm] $\pmat{1 & 2 & 3 & 4 \\ 0 & 0 & -9 & -13 \\ 0 & 0 & 0 & 0}$ [/mm]
An dieser Stelle sieht man, dass [mm] $x_3$ [/mm] eindeutig bestimmt ist [mm] ($\frac{13}{9}$), [/mm] du könntest also nur [mm] $x_1$ [/mm] oder [mm] $x_2$ [/mm] beliebig wählen.

Möglichkeit Nr. 2 wäre folgende:
[mm] $\pmat{1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 0 & 0 & 0 & 0}$ [/mm]

zieht man hier von der zweiten Zeile 2x die erste ab ergibt sich:
[mm] $\pmat{1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0}$ [/mm]

hier kannst du dann sogar zwei Variablen beliebig wählen.

Möglichkeit Nr. 3 ist:
[mm] $\pmat{ 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 10 \\ 0 & 0 & 0 & 0}$ [/mm]

auch hier von der zweiten Zeile 2x die erste abziehen:
[mm] $\pmat{1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0}$ [/mm]

Hier siehst du, dass in der zweiten Zeile steht 0=2, also ein Widerspruch, dieses LGS hätte also überhaupt keine Lösung.

Wie du siehst kannst du nicht immer beliebig wählen.
Wenn du wissen willst welche du wählen darfst bring das LGS mit dem Gaußalgorithmus so weit wie möglich in Zeilenstufenform.
Dann kannst du genau die Variablen frei wählen, in dessen Spalten du keinen Zeilenstufenanfang hast.

Also bei dieser Matrix hier:
[mm] $\pmat{1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0}$ [/mm]
Hast du nur in der ersten Spalte einen Zeilenstufenanfang, du kannst also die Variable in der zweiten und dritten Spalte frei wählen.

[mm] $\pmat{1 & 2 & 3 & 4 \\ 0 & 0 & -9 & -13 \\ 0 & 0 & 0 & 0}$ [/mm]

hier hast du in der ersten und in der dritten Spalte einen Zeilenstufenanfang, du kannst also die Variable in der zweiten Spalte frei wählen.


Hierbei ist es, wie du richtig festgestellt hast, vollkommen egal ob nun in der dritten Spalte [mm] $x_2$ [/mm] steht oder in der dritten Spalte [mm] $x_3$, [/mm] wichtig ist nur, dass du dich einmal entscheidest was in welcher Spalte steht und dabei bleibst.


Falls es noch Fragen gibt oder ewas unklar sein sollte sag bescheid. ;)


MfG

Schadowmaster

Bezug
                
Bezug
Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:52 Do 06.10.2011
Autor: FMX87

Danke für die ausführliche und klare Antwort!
gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]