matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenMatrix für Endomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Matrix für Endomorphismus
Matrix für Endomorphismus < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix für Endomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 Mi 09.05.2018
Autor: Maxi1995

Hallo,
Wie kann man für eine beliebige Matrix A ($n [mm] \times [/mm] n$) zeigen, dass sie bezüglich einer Basis B die Koordinatenmatrix des Endomorphismus eines n-dimensionalen Vektorraumes [mm] $K^n$ [/mm] ist?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Matrix für Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Mi 09.05.2018
Autor: angela.h.b.


> Hallo,
> Wie kann man für eine beliebige Matrix A ([mm]n \times n[/mm])
> zeigen, dass sie bezüglich einer Basis B die
> Koordinatenmatrix des Endomorphismus eines n-dimensionalen
> Vektorraumes [mm]K^n[/mm] ist?

Hallo,

A muß den Rang n haben, also vollen Rang.

Quatsch war das! Ich hatte die nicht gestellte Frage nach "Automorphismus" beantwortet.

LG Angela
>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Matrix für Endomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Mi 09.05.2018
Autor: Maxi1995

Liebe Angela,
Vielen Dank für deine Antwort. Leider weiß ich nur, dass ich Matrizen A und A' (beide [mm] $n\times [/mm] n$) habe, die ähnlich zueinander sind, d.h. es gibt eine invertierbare Matrix S, so dass gilt: $ SAS ^{-1 }= A' $. Nun sollen diese beiden Koordinatenmatrix der selben linearen Abbildung von $ [mm] K^n \rightarrow K^n$ [/mm] sein, wenn auch zu verschiedenen Basen. Ich würde diese Behauptung gerne zeigen. Ich nehme an irgendwie wird man deine Bemerkung zum Rang verwenden können, allerdings ist mir leider nicht ganz klar wie.


Bezug
                        
Bezug
Matrix für Endomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:49 Do 10.05.2018
Autor: angela.h.b.


> Ich nehme an irgendwie wird man
> deine Bemerkung zum Rang verwenden können, allerdings ist
> mir leider nicht ganz klar wie.

Guten Morgen,

nein, die Bemerkung wirst Du nicht verwenden können - denn sie war absoluter Blödsinn...

Du möchtest jetzt aber ein bissele etwas anderes als das, was Du in der Eingangsfrage schreibst...

Ich habe da im Moment keine Muße zu - vllt heute abend.

LG Angela


>

Bezug
                        
Bezug
Matrix für Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Do 10.05.2018
Autor: angela.h.b.


> Liebe Angela,
> Vielen Dank für deine Antwort. Leider weiß ich nur, dass
> ich Matrizen A und A' (beide [mm]n\times n[/mm]) habe, die ähnlich
> zueinander sind, d.h. es gibt eine invertierbare Matrix S,
> so dass gilt: [mm]SAS ^{-1 }= A' [/mm]. Nun sollen diese beiden
> Koordinatenmatrix der selben linearen Abbildung von [mm]K^n \rightarrow K^n[/mm]
> sein, wenn auch zu verschiedenen Basen. Ich würde diese
> Behauptung gerne zeigen.

Hallo,

sei B eine Basis und sei A die Matrix, welche die Abbildung [mm] f:K^n\to K^n [/mm] bzgl. der Basis B beschreibt.

Sei nun S eine invertierbare Matrix.
Du kannst sie als Basiswechselmatrix auffassen von der Basis B in eine Basis C. In den Spalten dieser Matrix stehen dann die Basisvektoren von B in Koordinaten bzgl. C.

Entsprechend ist [mm] S^{-1} [/mm] die Basiswechselmatrix für den Wechsel von C nach B, in ihren Spalten stehen die Basisvektoren von C in Koordinaten bzgl. B.

Was passiert nun, wenn ich A'= [mm] SAS^{-1} [/mm] auf einen Vektor [mm] v_C [/mm] anwende?
[mm] S^{-^1}v_C [/mm] liefert diesen Vektor in Koordinaten bzgl. B,
[mm] AS^{-1}v_C [/mm] sein Bild unter der Abbildung f in Koordinaten bzgl B,
und [mm] SAS^{-1}v_C [/mm] wandelt diesen Bildvektor bzgl B in einen Vektor bzgl C um.

LG Angela





 

Bezug
                                
Bezug
Matrix für Endomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Mo 14.05.2018
Autor: Maxi1995

Hallo Angela,
Vielen Dank fürdeine antwort. Für die Matrix A könnte ich ja einfach die kanonische Basis nehmen, weil ich weiß, dass die Multiplikation mit einer Matrix gerade eine lineare Abbildung ist und, dass A bezüglich der kanonischen Basis gerade Koordinatenmatrix ist. Und im Endeeffekt ist dann das, was du beschreibst nichts anderes als ein Basiswechsel bei der Koordinatenmatrix, oder?

Bezug
                                        
Bezug
Matrix für Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Mo 14.05.2018
Autor: angela.h.b.


> Hallo Angela,
> Vielen Dank fürdeine antwort. Für die Matrix A könnte
> ich ja einfach die kanonische Basis nehmen, weil ich weiß,
> dass die Multiplikation mit einer Matrix gerade eine
> lineare Abbildung ist und, dass A bezüglich der
> kanonischen Basis gerade Koordinatenmatrix ist. Und im
> Endeeffekt ist dann das, was du beschreibst nichts anderes
> als ein Basiswechsel bei der Koordinatenmatrix, oder?

Genau. Es wird "einfach" ein Basiswechsel vollzogen.

LG Angela

Bezug
                                                
Bezug
Matrix für Endomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:52 Sa 19.05.2018
Autor: Maxi1995

Liebe Angela,
vielen Dank für deine Antwort.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 7h 21m 6. HJKweseleit
UNum/Skizzieren einer Menge
Status vor 8h 29m 3. asg
ZahlTheo/Beweis einer Equivalenz von =
Status vor 1d 0h 34m 10. fred97
DiffGlGew/Globaler Existenzsatz
Status vor 1d 2h 03m 5. Chris84
DiffGlGew/Loesung DGL
Status vor 1d 2h 46m 2. leduart
ZahlTheo/Kleinstes gem. Vielfachaches
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]