matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteMatrix zu Eigenvektoren finden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Matrix zu Eigenvektoren finden
Matrix zu Eigenvektoren finden < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix zu Eigenvektoren finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 Sa 15.06.2013
Autor: Zero_112

Aufgabe
Betrachten Sie die symmetrischen reellen 3x3-Matrizen mit Eigenvektoren

[mm] v_1= \vektor{-1 \\ 0 \\ 1}, v_2= \vektor{1 \\ 0 \\ 1}, v_3 [/mm] = [mm] \vektor{1 \\ 1 \\ 1} [/mm]

a) Was lässt sich über die Eigenwerte dieser Matrizen aussagen?
b) Geben Sie eine Parametrisierung der Menge aller dieser Matrizen an.


Hallo.

zu a) Sie sind reell und es gilt ja, dass Eigenvektoren zu versch. Eigenwerten orthogonal sind. In diesem Fall ist [mm] v_1 [/mm] orthogonal zu [mm] v_2 [/mm] und [mm] v_3, v_2 [/mm] und [mm] v_3 [/mm] sind aber nicht orthogonal zueinander. Demnach müsste es 2 Eigenwerte geben, wobei einer algebraische Vielfachheit 1 und der andere die algebraische Vielfachheit 2 besitzt. Mehr wüsste ich jetzt dazu nicht.

b) Hier brauche ich ein wenig Hilfe. Ich weiß, dass für [mm] A\in M(nxn;\IR) [/mm] (symmetrisch) [mm] A=SDS^T [/mm] gilt, wobei S orthogonal mit orthonormierten Eigenvektoren in den Spalten ist und D die Diagonalmatrix mit Eigenwerten, aber die Eigenvektoren sind ja nichtmal alle orthogonal zueinander, also weiß ich nicht wie ich S aufstellen soll....(falls das überhaupt der richtige Lösungsansatz ist)

Vielleicht kann mir jemand einen Ansatz geben?

        
Bezug
Matrix zu Eigenvektoren finden: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Sa 15.06.2013
Autor: angela.h.b.


> Betrachten Sie die symmetrischen reellen 3x3-Matrizen mit
> Eigenvektoren

>

> [mm]v_1= \vektor{-1 \\ 0 \\ 1}, v_2= \vektor{1 \\ 0 \\ 1}, v_3[/mm]
> = [mm]\vektor{1 \\ 1 \\ 1}[/mm]

>

> a) Was lässt sich über die Eigenwerte dieser Matrizen
> aussagen?
> b) Geben Sie eine Parametrisierung der Menge aller dieser
> Matrizen an.

>

> Hallo.

>

Hallo!

> zu a) Sie sind reell und es gilt ja, dass Eigenvektoren zu
> versch. Eigenwerten orthogonal sind.

Ja:
Matrix symmetrisch, Eigenwerte verschieden ==> Eigenvektoren orthogonal.


> In diesem Fall ist [mm]v_1[/mm]
> orthogonal zu [mm]v_2[/mm] und [mm]v_3, v_2[/mm] und [mm]v_3[/mm] sind aber nicht
> orthogonal zueinander.

Ja.

> Demnach müsste es 2 Eigenwerte
> geben, wobei einer algebraische Vielfachheit 1 und der
> andere die algebraische Vielfachheit 2 besitzt.

Dieser Schluß ist nicht ganz richtig.
Richtig ist, daß [mm] v_2 [/mm] und [mm] v_3 [/mm] nicht zu verschiedenen Eigenwerten gehören können. Es gibt also max. zwei verschiedene Eigenwerte.

Aber es fällt mir kein Grund ein, der verhindern könnte, daß alle drei Vektoren zum selben Eigenwert gehören.

> Mehr
> wüsste ich jetzt dazu nicht.

>

> b) Hier brauche ich ein wenig Hilfe. Ich weiß, dass für
> [mm]A\in M(nxn;\IR)[/mm] (symmetrisch) [mm]A=SDS^T[/mm] gilt, wobei S
> orthogonal mit orthonormierten Eigenvektoren in den Spalten
> ist und D die Diagonalmatrix mit Eigenwerten, aber die
> Eigenvektoren sind ja nichtmal alle orthogonal zueinander,
> also weiß ich nicht wie ich S aufstellen soll....(falls
> das überhaupt der richtige Lösungsansatz ist)

>

> Vielleicht kann mir jemand einen Ansatz geben?

Angenommen, es gibt nur einen Eigenwert [mm] \lambda. [/mm]
Dann nimmst Du als Eigenvektoren halt [mm] v_1, v_2 [/mm] und einen dritten dazu orthogonalen [mm] w_3. [/mm] Noch normieren, schwupps hast Du eine ONB aus Eigenvektoren.

Angenommen Du hast verschiedene EWe [mm] \lambda [/mm] und [mm] \mu. [/mm]
Wie Du bereits oben schreibst, ist [mm] v_1 [/mm] EV zu [mm] \lambda [/mm] und [mm] v_2, v_3 [/mm] Eigenvektoren zu [mm] \mu. [/mm] Suche einen Vektor [mm] w_3\in , [/mm] welcher orthogonal ist zu [mm] v_2. [/mm]
Nun noch normieren, und schon hast Du alles, was Du brauchst.

LG Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]