matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMatrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Matrizen
Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen: Aufgabe 1und 2
Status: (Frage) beantwortet Status 
Datum: 19:16 Mi 31.05.2006
Autor: maggi20

Aufgabe
Es sei A die n*n Matrix (a ik) mit aik = 1, falls i+k = n+1
                                                            0, sonst.
Bestimmen Sie [mm] A^k [/mm] (k beliebig gewählt aus N)

Hallo liebe Leute!
Ich bin total verzweifelt bei dieser Aufagbe. Ich saß stundenlang dran. Ich verstehe überhaupt nicht was i und k sind und in welcher Verbindung sie zueinander stehen. [mm] A^k [/mm] ist doch die gesuchte Matrix oder? kann mir hier jemand weiterhelfen? Bitte, bitte, bitte. was mus ich hier machen.
Liebe Grüsse
Maggi

        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Mi 31.05.2006
Autor: benta

hallo maggi!

Die [mm] a_{ik} [/mm] sind die Matrixelemente der n*n Matrix, wobei i die Zeile und k die Spalte angibt. zB. [mm] a_{23} [/mm] ist das dritte Element in der zweiten Zeile.

Mit der Bedingung [mm] a_{ik} [/mm] = 1  für  i+k = n+1 und 0 sonst erhältst du eine transponierte Einheitsmatrix.
Bsp. für eine 3*3 Matrix:

[mm] \pmat{ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 } [/mm]


bildet man nun Potenzen dieser Matrix [mm] A^{k}, [/mm] dann ergibt sich für jede positive Potenz (k=2, 4, 6, ...) die Einheitsmatrix, also
[mm] A^{2k} [/mm] = E        für alle k aus [mm] \IN [/mm]
Bsp.:
[mm] \pmat{ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 } [/mm] * [mm] \pmat{ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 } [/mm] = [mm] \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } [/mm]


und für alle ungeraden Potenzen wieder die ursprüngliche Matrix, also
[mm] A^{2k+1} [/mm] = A       für alle k aus [mm] \IN [/mm]

liebe grüße
bernd


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]