matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMatrizen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Matrizen
Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen: beweise
Status: (Frage) beantwortet Status 
Datum: 12:03 Di 11.01.2005
Autor: Cinderella1

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo liebe leute,
wer kann mir bei folgender aufgabe helfen)

Sei K ein Körper, n [mm] \ge [/mm]  2, und sei μ : K^(n,n) −> K eine multiplikative
Funktion (d.h. es ist μ(AC) = μ(A)μ(C) für alle A,C  [mm] \in [/mm]  K^(n,n)), die weder konstant 0
noch konstant 1 ist. Man beweise:
A  [mm] \in [/mm] K^(n,n) ist genau dann invertierbar, wenn μ(A)  [mm] \not= [/mm] 0 ist.

danke im voraus,

eure melli


        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Di 11.01.2005
Autor: DaMenge

hi melli,

wenn ich mich nicht irre, ist ...

EDIT: hier stand ein falsches Gegenbeispiel - siehe Secki's Beitrag unten..

Vielleicht hab ich deine Definition von multiplikativ falsch verstanden
oder hast du noch was vergessen ?

die "Hinrichtung" kann man jedoch beweisen:
zuerst zeige, dass für die Einheitsmatrix E gilt : $ [mm] \mu (E)=1_K [/mm] $
([einfach ausnutzen, dass $ [mm] \mu [/mm] (A) [mm] =\mu [/mm] (A*E) $ ist])

und dann ist $ [mm] 1=\mu (E)=\mu (A*A^{-1})=\mu (A)*\mu (A^{-1}) [/mm] $
dieses Produkt darf nicht Null werden, deshalb auch nicht $ [mm] \mu [/mm] (A) $

viele Grüße
DaMenge

Bezug
                
Bezug
Matrizen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:35 Di 11.01.2005
Autor: Cinderella1

hallo DaMenge,

vielen dank für deine schnelle hilfe. habe nochmal die aufgabe mit meinen eintrag verglichen --> eingabe ist korrekt. mir ist leider dein lösungsansatz für die aufgabe noch nicht ganz schlüssig; könntest du mir vielleicht kurz zeigen nach welchem satz o.ä. auf du auf diesen ansatz gekommen bist?

liebe grüße,

melli

Bezug
                        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Di 11.01.2005
Autor: DaMenge

Hi,

du willst doch zeigen:
A $ [mm] \in [/mm] $ K^(n,n) ist invertierbar $ [mm] \gdw\quad \mu (A)\not= [/mm] 0 $

"=>" : man zeigt leicht : $ [mm] 1=\mu (A)\cdot{}\mu (A^{-1}) [/mm] $
dann kann aber nicht $ [mm] \mu [/mm] (A)=0 $ (denn in K gilt 0*a=0), also $ [mm] \mu (A)\not= [/mm] 0 $

"<=" : hier hab ich oben ein gegenbeispiel gebracht
Du hast leider nicht gesagt, ob dies wirklich eins ist, oder ob ich dich missverstanden habe.
Sollte es eins sein, dann kann man natürlich "<=" nicht beweisen !

viele Grüße
DaMenge

Bezug
                                
Bezug
Matrizen: eins oder nicht?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Di 11.01.2005
Autor: Cinderella1

hallo DaMenge,

habe geschrieben, dass die Fkt nicht 0 und nicht 1 ist. damit hast du dann auch recht behalten.

vielen dank

Bezug
                
Bezug
Matrizen: Bsp. falsch?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:06 Di 11.01.2005
Autor: SEcki

Hallo,

>  Gegenbeispiel zur Rückrichtung: nimm die Standard 2x2
> Matrizen ausm [mm]\IR^2[/mm] und definiere: [mm]\mu (A)=1[/mm] für alle
> Matrizen außer der Nullmatrix und für die Nullmatrix setze
> die Funktion 0
>  diese ist konstant und auch multiplikativ

Soll ja nicht so aussehen, als ob ich deine Artikel auf Fehler übperprüfe, aber:

Deine Funktion ist nicht multiplikativ. Du musst mindestens auch noch alle Nilpotenten Matrizen auf 0 setzen. Ob man dein Bsp retten kann sehe ich gerade nicht - soll heissen: ist die Funktion, wenn man sie auch nur auf nilpotente Matrizen mit 0 ausdehtn multiplikativ? Hmm, ich überleg mir gerade: wenn ich etwas mit den Elemenatrmatrizen (ale inv.bar , also bzgl. der Abb. >0) multiplizeire, kriege ich die Matriz auf Zeilenstufenform - wenn also die Zeilenstufenform eine nilpotente ist, dann ist deine Abb. auch 0 für diese Matrizen. Ws passiert eigtl., wenn die Nullmatrix einen Wert verschieden von 0 und 1 animmt? Wohl schnell ein Wdsp. zu [mm]0^2=0[/mm]. Bleibt also übrig: alle nicht inv.baren Matrizen auf Zstf, also welche die auf der Diagonale zwangsläufig 0er haben - und die inv.baren ja nicht.

SEcki

Bezug
                        
Bezug
Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:46 Mi 12.01.2005
Autor: DaMenge

Du hast vollkommen recht, SEcki !

vielen Dank für die Richtigstellung !

mal überlegen, ob es nicht einen schöneren Beweis gibt - obwohl ich auch schon an Elementarmatrizen gedacht habe..

viele Grüße
DaMenge

Bezug
                
Bezug
Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:20 Mi 12.01.2005
Autor: SEcki

Hallo,

Also, ich hab mir das jetzt nochmal überlegt und (kann gerad nicht schalfen ...) schreibe kurz die Ideen zum Beweis der Rückrichtung:

Man nenne die multiplikative Funktion einfach mal m. Sie ist weder konstant 1 noch konstant 0. Daher ist [mm]m(E_n)=1[/mm] und [mm]m(0)=0[/mm] (erste 0 ist Nullmatrix). (Zweites folgt aus : [mm]\exits K:m(K)\ne 1\wedge m(0)=1\Rightarrowm(K)=m(K)*m(0)=m(0)[/mm].

Weiter: alle nilpotenten Matrizen haben offenabr den gleichen Wert wie die Nullmatrix, nämlich 0. Für eine Matrix ist der Wert also dann 0, wenn man sie durch Multiplikation mit inv.baren Matrizen zu einer nilpotenten machen kann - das folgt dann alles aus der Multiplikativität.

Drittens: Man bringe eine nicht inv.bare Matrix in Zeilenstufenform - das geht durch Linksmultiplikation mit entsprechenen inv.baren Matrizen. Dann kann man ebenso Spaltenumformungen machen - die Rechtsmultiplikation mit den gleichen Matrizen wie oben. Und wie man das bei einer Zstf macht, so dass dann eien nilpotente herauskommt, ist eigltich klar, wenn man sich das mal aufmalt - erst "Schmutz" wegräumen, und dann die übrigen Elemente geschickt nach rechtsschieben - und man erhält eine Matrix mit lauter 0en auf de rDiagonale.

Also ist die Behauptung des OP doch wahr - hoffe ich zumindest

Übrings: Deine Beispielmatrix lässt sich ja sehr leicht auf eine nilpotente Form bringen durch eine Spaltenumformung.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]