matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrizen Inverse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Matrizen Inverse
Matrizen Inverse < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen Inverse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Mo 15.02.2010
Autor: Kubs3

Aufgabe
[mm] A^{-1}=\pmat{ 1 & 7 & 2 \\ 1 & 4 & 1 \\ 1 & 9 & 3} [/mm]

Gesucht ist die Lösung der Gleichung [mm] A*\vec{x}=\pmat{ 2 \\ 1,5 \\ 1} [/mm]

Kann man sagen dass [mm] vec{x}=\pmat{ 2 \\ 1,5 \\ 1} [/mm] / A bzw.   [mm] vec{x}=\pmat{ 2 \\ 1,5 \\ 1} [/mm] * [mm] A^{-1} [/mm] ?

Oder muss man aus der Inversen von A, A herleiten (Gauß)?

Danke schön im voraus!
mfg
Jakob

        
Bezug
Matrizen Inverse: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Mo 15.02.2010
Autor: fred97


> [mm]A^{-1}=\pmat{ 1 & 7 & 2 \\ 1 & 4 & 1 \\ 1 & 9 & 3}[/mm]
>  
> Gesucht ist die Lösung der Gleichung [mm]A*\vec{x}=\pmat{ 2 \\ 1,5 \\ 1}[/mm]
>  
> Kann man sagen dass [mm]vec{x}=\pmat{ 2 \\ 1,5 \\ 1}[/mm] / A bzw.
> [mm]vec{x}=\pmat{ 2 \\ 1,5 \\ 1}[/mm] * [mm]A^{-1}[/mm] ?
>  
> Oder muss man aus der Inversen von A, A herleiten (Gauß)?


Einfacher gehts doch nicht mehr, wenn Dir ein freundlicher Mensch die Inverse schon genannt hat :


Multiplizere  [mm]A*\vec{x}=\pmat{ 2 \\ 1,5 \\ 1}[/mm]  von links mit [mm] A^{-1}. [/mm] Was steht dann da ?

FRED

>  
> Danke schön im voraus!
>  mfg
>  Jakob


Bezug
                
Bezug
Matrizen Inverse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Mo 15.02.2010
Autor: Kubs3

Danke für die schnelle Antwort!

[mm] \vektor{14,5 \\ 9 \\ 18,5} [/mm]  .....?


Bezug
                        
Bezug
Matrizen Inverse: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Mo 15.02.2010
Autor: leduart

Hallo
Edit: der Vektor ist richtig
letzte Komponente falsch.
gruss leduart

Bezug
                                
Bezug
Matrizen Inverse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Mo 15.02.2010
Autor: Kubs3

1*2+7*1,5+2*1=14,5
1*2+4*1,5+1*1=9
1*2+9*1,5+3*1=18,5    

...........?
mfg

Bezug
                                        
Bezug
Matrizen Inverse: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Mo 15.02.2010
Autor: leduart

Hallo
sorry, ich hab mich verrechnet, Du hattest recht.
Gruss leduart

Bezug
                                                
Bezug
Matrizen Inverse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Mo 15.02.2010
Autor: Kubs3

Ok. Dank an Alle!
mfg
Jakob

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]