Matrizen ableiten/Matrixregeln < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:08 Mo 06.11.2006 | Autor: | ScrapyI |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
ich habe eine Frage bzgl. der Matrixschreibweise. Da ich mittlerweile nur die Grundkenntnisse diesbezüglich habe, hab ich ein paar weitere Fragen dazu.
Bei einer Aufgabe haben wir folgendes berechnet:
[mm] \beta'X'y=y'X\beta [/mm]
Mir ist dabei nicht klar, dass man für [mm] y'X\beta [/mm] auch [mm] \beta'X'y [/mm] schreiben kann. Auf welcher Regel/Annahme basiert dieses?
Weiter wird [mm] S(\beta)=y'y-2\beta'X'y+\beta'X'X\beta [/mm] nach [mm] \beta [/mm] abgeleitet. Da ich mit den Ableitungsregeln bei der Matrixschreibweise überhaupt nicht vertraut bin, bitte ich euch, mir den Schritt zu erklären:
Wenn man also [mm] S(\beta)=y'y-2\beta'X'y+\beta'X'X\beta [/mm] nach [mm] \beta [/mm] ableitet kommt man zu folgender Gleichung:
[mm] -2X'y+2X'X\beta=0
[/mm]
Nach [mm] \beta [/mm] aufgelöst: [mm] \beta=(X'X)^{-1}X'y
[/mm]
Wie kommt man darauf??
Ich habe leider nirgends Regeln fürs Ableiten gefunden. Hat jemand von euch dazu ein paar Tipps?
Vielen Dank!
|
|
|
|
Hallo Scrapy,
Der ' soll offenbar Transponiert heißen.
>
> [mm]\beta'X'y=y'X\beta[/mm]
Diese Regel ist richtig wenn [mm] \bet [/mm] und y Vektoren und X eine entsprechende Matrix ist da dann [mm] y^TX\beta [/mm] eine Zahl ist und da kann man zum Transponierten übergehen [mm] 2^T=2
[/mm]
> Mir ist dabei nicht klar, dass man für [mm]y'X\beta[/mm] auch
> [mm]\beta'X'y[/mm] schreiben kann. Auf welcher Regel/Annahme basiert
> dieses?
>
> Weiter wird [mm]S(\beta)=y'y-2\beta'X'y+\beta'X'X\beta[/mm] nach
> [mm]\beta[/mm] abgeleitet. Da ich mit den Ableitungsregeln bei der
> Matrixschreibweise überhaupt nicht vertraut bin, bitte ich
> euch, mir den Schritt zu erklären:
> Wenn man also [mm]S(\beta)=y'y-2\beta'X'y+\beta'X'X\beta[/mm] nach
> [mm]\beta[/mm] ableitet kommt man zu folgender Gleichung:
> [mm]-2X'y+2X'X\beta=0[/mm]
> Nach [mm]\beta[/mm] aufgelöst: [mm]\beta=(X'X)^{-1}X'y[/mm]
> Wie kommt man darauf??
Die Ableitungsregeln gelten analog für die partiellen Ableitungen:
[mm] \frac{\partial (A*B)}{\partial \beta_k}=\frac{\partial (A)}{\partial \beta_k}*B+A*\frac{\partial (B)}{\partial \beta_k}
[/mm]
Wobei die Ableitung komponentenweise zu verstehen ist.
Beim zusammenfassen des ganzen ist dann die obige Rechenregel nützlich.
Alles klar?
viele Grüße
mathemaduenn
Ps.: Wußte ich doch kam mir bekannt vor diese Frage.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:11 Di 07.11.2006 | Autor: | ScrapyI |
Hallo, danke für deine Hilfe.
Ja, das ' soll Transponiert heißen. Wir schreiben statt einem T ein '.
Leider ist mir das noch nicht ganz klar, wie ich von
[mm] y'X\beta [/mm] auf [mm] \beta'X'y [/mm] komm.
Meine Denkweise dahinter ist die folgende:
Wenn ich statt [mm] y'X\beta [/mm] einfach [mm] (X\beta)'y [/mm] schreiben würde, dann würde ich ganz einfach auf [mm] \beta'X'y [/mm] kommen. Aber darf man [mm] y'X\beta [/mm] so einfach in [mm] (X\beta)'y [/mm] umformen?
Bei der Ableitung ist mir auch manches klar, manchnes nicht.
1. Fällt y'y einfach weg, weil kein [mm] \beta [/mm] dabei ist?
2. Bei [mm] -2\beta'X'y [/mm] fällt [mm] \beta' [/mm] weg, weil ja nach [mm] \beta [/mm] abgeleitet wird?
3. Woher kommt die 2 bei [mm] 2X'X\beta [/mm] und warum fällt hier das letzte [mm] \beta [/mm] nicht weg?
|
|
|
|
|
Hallo Scrapy,
> Hallo, danke für deine Hilfe.
> Ja, das ' soll Transponiert heißen. Wir schreiben statt
> einem T ein '.
>
> Leider ist mir das noch nicht ganz klar, wie ich von
> [mm]y'X\beta[/mm] auf [mm]\beta'X'y[/mm] komm.
> Meine Denkweise dahinter ist die folgende:
> Wenn ich statt [mm]y'X\beta[/mm] einfach [mm](X\beta)'y[/mm] schreiben
> würde, dann würde ich ganz einfach auf [mm]\beta'X'y[/mm] kommen.
> Aber darf man [mm]y'X\beta[/mm] so einfach in [mm](X\beta)'y[/mm]
> umformen?
I.A. darf man das nicht hier ja Warum? - Weil das einfach eine Zahl ist. oder eine (1x1) Matrix
[mm] 2^T=2 3^T=3 [/mm] usw.
Ansonsten gibt's natürlich nocht die normalen Regeln fürs Transponieren
[mm] (A*B)^T=B^T*A^T
[/mm]
[mm] (A^T)^T=A
[/mm]
> Bei der Ableitung ist mir auch manches klar, manchnes
> nicht.
> 1. Fällt y'y einfach weg, weil kein [mm]\beta[/mm] dabei ist?
Ja. Ableitung von Konstanten =0 (hier der Nullvektor)
> 2. Bei [mm]-2\beta'X'y[/mm] fällt [mm]\beta'[/mm] weg, weil ja nach [mm]\beta[/mm]
> abgeleitet wird?
> 3. Woher kommt die 2 bei [mm]2X'X\beta[/mm] und warum fällt hier
> das letzte [mm]\beta[/mm] nicht weg?
Hast Du dier die verlinkte Diskussion angeschaut?
viele Grüße
mathemaduenn
|
|
|
|