matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenMax. Lösungsintervall
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Max. Lösungsintervall
Max. Lösungsintervall < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Max. Lösungsintervall: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:30 So 13.05.2012
Autor: couldbeworse

Aufgabe
Gegeben sei das folgende AWP: [mm]y'=x^2+y^2, y(0)=0[/mm] in [mm]\IR^2[/mm]. Bestimmen Sie das größte Lösungsintervall auf dem der Satz von Peano eine lösung garantiert. Wie lautet die Antwort, wenn Sie im AWP [mm]y'=x^2+y^2, y(0)=0[/mm] durch [mm]y'= \left| x\right|^p+\leftt| y\right| ^p, p>1[/mm] ersetzen?

Hallo!
Ich bin mir nicht so ganz sicher, ob ich verstanden habe was zu tun ist. Also, der Satz von Peano gilt für AWP's der Form [mm]y'=f(x,y), y(x_0)=y_0[/mm] wobei f stetig sein soll, das paßt ja schon mal. Dann kann ich ein Intervall der um [mm]x_0[/mm] der Form [mm]\left[x_0-a,x_0+a\right], a>0[/mm] und einen Ball um [mm]y_0[/mm] mit Radius [mm]b, b>0[/mm] finden, sodaß für [mm]Z_a_b=\left[x_0-a,x_0+a\right]xB_b(y_0)[/mm] und [mm]M=max\{\left|f(x,y)\right| :(x,y) \in Z_a_b\}[/mm] gilt: falls [mm]\bruch{b}{M}\ge a[/mm], dann ist [mm]\left[x_0-a,x_0+a\right][/mm] das größtmögliche Lösungsintervall.
Wenn ich die Aufgabe richtig verstanden habe, dann muß man gar keine explizite Lösung des AWP bestimmen. Ich betrachte also Intervalle um den Punkt (0,0). Da die Funktion f Summe von Parabeln ist, ist das Maximum [mm]M=a^2+b^2[/mm]. Jetzt kommt der Teil den ich nicht verstehe: Ich kann doch sowohl a, als auch b beliebig wählen und damit auch für den immer steiler ansteigenden Parabelast das Intevall auf der x-Achse so klein machen, das die Funktion f noch auf dem gesamten Intervall definiert ist - dann wäre mein maximales Lösungsintervall aber ganz [mm]\IR[/mm]? Das kann doch nicht stimmen, oder?

Liebe Grüße
couldbeworse

        
Bezug
Max. Lösungsintervall: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Do 17.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]