matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenMaximales Existenzintervall
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Maximales Existenzintervall
Maximales Existenzintervall < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximales Existenzintervall: Ein konkretes Beispiel
Status: (Frage) beantwortet Status 
Datum: 00:06 Mi 03.08.2011
Autor: GeMir

Aufgabe
Berechnen Sie die maximalen Lösungen, insbesondere auch deren Definitionsbereiche, der folgenden Anfangswertprobleme:

a) $y' = [mm] \frac{xy(y-2)}{x^2-1}, \quad [/mm] y(0)=1$

b) $y' = [mm] \frac{xy^3}{\sqrt{1+x^2}}, \quad [/mm] y(0)=1$


In beiden Fällen lässt sich der Satz über Separation der Variablen anwenden.

Zu a):

Definiere:

$f: [mm] \mathbb{R}\backslash\{-1,1\} \longrightarrow \mathbb{R}: [/mm] x [mm] \longmapsto \frac{x}{x^2-1}$ [/mm] stetig
$g: [mm] \mathbb{R} \longrightarrow \mathbb{R}\backslash\{0\}: [/mm] y [mm] \longmapsto [/mm] y(y-2)$ stetig

Dann sind:

$F(x) = [mm] \int_{0}^{x}{\frac{t}{t^2-1}dt} [/mm] = [mm] \ldots [/mm] = [mm] \frac{1}{2}\ln(|x^2-1|)$ [/mm]

$G(y) = [mm] \int_{1}^{y}{\frac{1}{s(s-2)}ds} [/mm] = [mm] \ldots [/mm] = [mm] \frac{1}{2}(\ln(|y-2|) [/mm] - [mm] \ln(|y|))$ [/mm]

Setze [mm] $\frac{1}{2}(\ln(|y-2|) [/mm] - [mm] \ln(|y|)) [/mm] = [mm] \frac{1}{2}\ln(|x^2-1|) [/mm] + c$

Einsetzen von [mm] $x_0$ [/mm] und [mm] $y_0$ [/mm] führt zu $c = 0$

Löse nach $y$ auf:

[mm] $\ln(|y-2|) [/mm] - [mm] \ln(|y|) [/mm] = [mm] \ln(|x^2-1|)$ [/mm]

[mm] $\exp(\ln(|y-2|) [/mm] - [mm] \ln(|y|)) [/mm] = [mm] \exp(\ln(|x^2-1|))$ [/mm]

[mm] $\bigg|1-\frac{2}{y}\bigg| [/mm] = [mm] |x^2-1|$ [/mm] (Frage 1: Darf man ab der Stelle Betragstriche weglassen?)

[mm] $\vdots$ [/mm]

$y = [mm] \frac{2}{2-x^2} [/mm] = [mm] \varphi$ [/mm] die eindeutige Lösung vom AWP.

[mm] $\varphi$ [/mm] ist auf [mm] $\mathbb{R}\backslash\{-2,2\}$ [/mm] definiert, die Bedingung [mm] $F(I_{max}) \subset G(\mathbb{R}) [/mm] = [mm] (-\infty, [/mm] 0)$ muss aber erfüllt sein, deswegen ist [mm] $I_{max} [/mm] = (-2,0)$ (Frage 2: Kann doch nicht richtig sein, weil [mm] $x_0 \notin I_{max}$. [/mm] Wie sieht es denn richtig aus?)

-----------------------------

Zu b):

Definiere:

$f: [mm] \mathbb{R} \longrightarrow \mathbb{R}: [/mm] x [mm] \longmapsto \frac{x}{\sqrt{1+x^2}}$ [/mm] stetig
$g: [mm] \mathbb{R}\backslash\{0\} \longrightarrow \mathbb{R}\backslash\{0\}: [/mm] y [mm] \longmapsto y^3$ [/mm] stetig

Dann sind:

$F(x) = [mm] \int_{0}^{x}{\frac{t}{\sqrt{1+t^2}}dt} [/mm] = [mm] \ldots [/mm] = [mm] \sqrt{1+x^2}-1$ [/mm]

$G(y) = [mm] \int_{1}^{y}{\frac{1}{s^3}ds} [/mm] = [mm] \ldots [/mm] = [mm] \frac{1}{2}\bigg(1 [/mm] - [mm] \frac{1}{y^2}\bigg)$ [/mm]

Setze: [mm] $\frac{1}{2}\bigg(1 [/mm] - [mm] \frac{1}{y^2}\bigg) [/mm] = [mm] \sqrt{1+x^2} [/mm] - 1 + c$

Einsetzen von [mm] $x_0$ [/mm] und [mm] $y_0$ [/mm] führt zu $c = 0$

Löse nach $y$ auf:

$1 - [mm] \frac{1}{y^2} [/mm] = [mm] 2\sqrt{1+x^2} [/mm] - 2$

[mm] $\vdots$ [/mm]

$y = [mm] \pm \frac{1}{3-2\sqrt{1+x^2}} [/mm] = [mm] \varphi$ [/mm] die eindeutige Lösung vom AWP.

Wegen [mm] $x_0 \overset{!}{\in} I_{max}$ [/mm] ist [mm] $\varphi [/mm] = [mm] \frac{1}{3-2\sqrt{1+x^2}}$. [/mm]

[mm] $\varphi$ [/mm] ist auf [mm] $\mathbb{R}\backslash\{-\frac{\sqrt{5}}{2},\frac{\sqrt{5}}{2}\}$ [/mm] definiert, die Bedingung [mm] $F(I_{max}) \subset G(\mathbb{R}) [/mm] = [mm] \bigg(-\infty,\frac{1}{2}\bigg)$ [/mm] muss aber erfüllt sein, deswegen ist [mm] $I_{max} [/mm] = [mm] \bigg(-\frac{\sqrt{5}}{2}, \frac{1}{2}\bigg)$ [/mm] (Frage 3: Ist das richtig?)

        
Bezug
Maximales Existenzintervall: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Mi 03.08.2011
Autor: schachuzipus

Hallo GeMir,



> Berechnen Sie die maximalen Lösungen, insbesondere auch
> deren Definitionsbereiche, der folgenden
> Anfangswertprobleme:
>  
> a) [mm]y' = \frac{xy(y-2)}{x^2-1}, \quad y(0)=1[/mm]
>  
> b) [mm]y' = \frac{xy^3}{\sqrt{1+x^2}}, \quad y(0)=1[/mm]
>  
> In beiden Fällen lässt sich der Satz über Separation der
> Variablen anwenden.
>  
> Zu a):
>  
> Definiere:
>  
> [mm]f: \mathbb{R}\backslash\{-1,1\} \longrightarrow \mathbb{R}: x \longmapsto \frac{x}{x^2-1}[/mm]
> stetig
>  [mm]g: \mathbb{R} \longrightarrow \mathbb{R}\backslash\{0\}: y \longmapsto y(y-2)[/mm]
> stetig
>  
> Dann sind:
>  
> [mm]F(x) = \int_{0}^{x}{\frac{t}{t^2-1}dt} = \ldots = \frac{1}{2}\ln(|x^2-1|)[/mm]
>  
> [mm]G(y) = \int_{1}^{y}{\frac{1}{s(s-2)}ds} = \ldots = \frac{1}{2}(\ln(|y-2|) - \ln(|y|))[/mm]
>  
> Setze [mm]\frac{1}{2}(\ln(|y-2|) - \ln(|y|)) = \frac{1}{2}\ln(|x^2-1|) + c[/mm]
>
> Einsetzen von [mm]x_0[/mm] und [mm]y_0[/mm] führt zu [mm]c = 0[/mm] [ok]

Ich habe hier zunächst nach [mm]y[/mm] aufgelöst und am Ende die AB eingesetzt, dann kannst du leichter mit den Beträgen hantieren, definiere einfach die Konstanten um ...

Also von der letzten Zeile:

[mm]\ln\left(\left|\frac{y-2}{y}\right|\right)=\ln(|x^2-1|)+2c[/mm]

Also [mm]\left|\frac{y-2}{y}\right|=e^{2c}\cdot{}|x^2-1|=\tilde c\cdot{}|x^2-1|[/mm]

Damit [mm]\frac{y-2}{y}=\hat c(x^2-1)[/mm]

Nun nach y auflösen und die AB einsetzen und du kommst auf [mm]y=\frac{2}{2-x^2}[/mm]

>  
> Löse nach [mm]y[/mm] auf:
>  
> [mm]\ln(|y-2|) - \ln(|y|) = \ln(|x^2-1|)[/mm]
>  
> [mm]\exp(\ln(|y-2|) - \ln(|y|)) = \exp(\ln(|x^2-1|))[/mm]
>  
> [mm]\bigg|1-\frac{2}{y}\bigg| = |x^2-1|[/mm] (Frage 1: Darf man ab
> der Stelle Betragstriche weglassen?)

Ohne weitere Bedingungen nicht ...

>  
> [mm]\vdots[/mm]
>  
> [mm]y = \frac{2}{2-x^2} = \varphi[/mm] die eindeutige Lösung vom
> AWP.
>  
> [mm]\varphi[/mm] ist auf [mm]\mathbb{R}\backslash\{-2,2\}[/mm] definiert, [notok]

Zum einen meinst du [mm]\pm\sqrt{2}[/mm], zum anderen sind Lösungen stets auf zusammenhängenden Gebieten, hier Intervallen, definiert.

Infrage kommen hier nur [mm]I_1=(-\infty,-\sqrt{2})[/mm] oder [mm]I_2=(-\sqrt{2},\sqrt{2})[/mm] oder [mm]I_3=(\sqrt{2},\infty)[/mm]

Wegen des Anfangswertes kommt nur [mm]I_2[/mm] infrage.

Es ist also [mm]y:I_2\to\IR, x\mapsto \frac{2}{2-x^2}[/mm] die eind. Lösung des Anfangswertproblems (a)

> die Bedingung [mm]F(I_{max}) \subset G(\mathbb{R}) = (-\infty, 0)[/mm]
> muss aber erfüllt sein,

die Bedingung kenne ich nicht ...

Es ist aber [mm]F(I_2\setminus\{\pm\sqrt{2}\})=(-\infty,0)[/mm]

Was sagt denn Picard-Lindlöf?

> deswegen ist [mm]I_{max} = (-2,0)[/mm]

Nein!

> (Frage 2: Kann doch nicht richtig sein, weil [mm]x_0 \notin I_{max}[/mm].
> Wie sieht es denn richtig aus?)

Siehe oben.

Das ist die simpel errechnete Lösung ohne Eindeutigkeitskriterien ...

>  
> -----------------------------
>  
> Zu b):
>  
> Definiere:
>  
> [mm]f: \mathbb{R} \longrightarrow \mathbb{R}: x \longmapsto \frac{x}{\sqrt{1+x^2}}[/mm]
> stetig
>  [mm]g: \mathbb{R}\backslash\{0\} \longrightarrow \mathbb{R}\backslash\{0\}: y \longmapsto y^3[/mm]
> stetig
>  
> Dann sind:
>  
> [mm]F(x) = \int_{0}^{x}{\frac{t}{\sqrt{1+t^2}}dt} = \ldots = \sqrt{1+x^2}-1[/mm]
>  
> [mm]G(y) = \int_{1}^{y}{\frac{1}{s^3}ds} = \ldots = \frac{1}{2}\bigg(1 - \frac{1}{y^2}\bigg)[/mm]
>  
> Setze: [mm]\frac{1}{2}\bigg(1 - \frac{1}{y^2}\bigg) = \sqrt{1+x^2} - 1 + c[/mm]
>  
> Einsetzen von [mm]x_0[/mm] und [mm]y_0[/mm] führt zu [mm]c = 0[/mm]
>  
> Löse nach [mm]y[/mm] auf:
>  
> [mm]1 - \frac{1}{y^2} = 2\sqrt{1+x^2} - 2[/mm]
>  
> [mm]\vdots[/mm]
>  
> [mm]y = \pm \frac{1}{3-2\sqrt{1+x^2}} = \varphi[/mm] die eindeutige
> Lösung vom AWP.

Da fehlt doch eine Wurzel:

[mm]y=\pm\frac{1}{\sqrt{3-2\sqrt{x^2+1}}}[/mm]

Wegen [mm]y(0)=1>0[/mm] kommt dann nur [mm]y=+\frac{1}{\sqrt{3-2\sqrt{x^2+1}}}[/mm] infrage

>  
> Wegen [mm]x_0 \overset{!}{\in} I_{max}[/mm] ist [mm]\varphi = \frac{1}{3-2\sqrt{1+x^2}}[/mm].

Mit Wurzel!

>
> [mm]\varphi[/mm] ist auf
> [mm]\mathbb{R}\backslash\{-\frac{\sqrt{5}}{2},\frac{\sqrt{5}}{2}\}[/mm]

Nee, auf [mm]\left(-\frac{\sqrt{5}}{2},\frac{\sqrt{5}}{2}\right)=:I[/mm]

Und [mm]x_0=0\in I[/mm]

Also [mm]y:I\to\IR, x\mapsto \frac{1}{\sqrt{3-2\sqrt{x^2+1}}}[/mm] als eind. Lösung der AWA (b)

> definiert, die Bedingung [mm]F(I_{max}) \subset G(\mathbb{R}) = \bigg(-\infty,\frac{1}{2}\bigg)[/mm]
> muss aber erfüllt sein, deswegen ist [mm]I_{max} = \bigg(-\frac{\sqrt{5}}{2}, \frac{1}{2}\bigg)[/mm]
> (Frage 3: Ist das richtig?)

Nein

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]