Maximierungsproblem < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:28 Fr 05.12.2008 | Autor: | cluedo |
Aufgabe | [mm]\max_x \left\{\left(\frac{x}{2}(1-x)\right)^\alpha \left(\frac{1}{4} x^2\right)^{1-\alpha}\right\},\quad \alpha,x\in[0,1] [/mm] |
Hi Leute,
ich hab das Problem das Maximum der Gleichung zu berechnen. Es stammt aus einem Artikel den ich gelesen habe und dort finden sie das maximum bei [mm]x=1-\frac{\alpha}{2}[/mm]. Ich komme allerdings nicht darauf. Ich hab es bis [mm] x=\frac{2-\alpha}{4\alpha-2}[/mm] geschafft und komme einfach nicht weiter und denke inzwischen, dass der Fehler irgendwo in der Ableitung gewesen sein muss. Vielleicht kann mir hier ja jmd. helfen. zumindestens erkennen ob man meinen ausdruck in den geforderten überführen kann.
Vielen Dank im Voraus
grüße
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Man kann Deinen Ausdruck immer dann in den gesuchten überführen, wenn [mm] \alpha=1.
[/mm]
Das ist eine nicht erwünschte Einschränkung.
Zeig mal wesentliche Elemente Deiner Rechnung, z.B. die Ableitung. Dann finden wir den Fehler gemeinsam...
|
|
|
|