matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikMaximum-Likelihood-Methode
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "mathematische Statistik" - Maximum-Likelihood-Methode
Maximum-Likelihood-Methode < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum-Likelihood-Methode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Sa 17.03.2007
Autor: ragsupporter

Aufgabe
Ein Merkmal X unterliegt einer diskreten Wahrscheinlichkeitsverteilung mit der Wahrscheinlichkeitsfunktion [mm] P(X=k) = (k-2)p^{2}(1-p)^{k-3} [/mm] für k=2,3,4,... . Weiterhin gilt für den Erwartungswert [mm] E(X) = \bruch{2+p}{p} [/mm]

a) Geben Sie mit Hilfe der MLM eine Schätzfunktion für den Parameter p an!
b) Ermitteln Sie einen Schätzer für den Parameter p mittels Momentenmethode!
c) Betimmen Sie mit Hilfe der in a) und b) gefundenen Schätzfunktionen aus der Stichprobe
95 43 23 52 20 74 83 18 konkrete Schätzwerte für p!

Hallo,

also ich habe für a und b den Ansatz... weiss dann aber nicht so recht wie ich weiterrechnen muss (umstellen nach p).

zu a) Maximum-Likelihood-Methode

[mm] L(x_1 ,...,x_n | \lambda ) = \produkt_{i=1}^{n} P(X=x_i) = \produkt_{i=1}^{n} (x_i - 2) p^2 (1-p)^{x_i - 3} |\ln [/mm]

ln um die exponenten rauszubekommen
daraus folgt:

[mm] \ln L(x_1 ,...,x_n | \lambda ) = ... [/mm]
--> hier komme ich nicht weiter

zu b.) Momentenmethode

[mm] \bruch {1}{n} \summe_{i=1}^{n} = m_1 = EX = \bruch {2+p}{p} [/mm]

weiss hier nicht so recht wie ich das auflösen muss.

bin über jede hilfe dankbar.

mfg markus

        
Bezug
Maximum-Likelihood-Methode: Tipps
Status: (Antwort) fertig Status 
Datum: 18:14 Sa 17.03.2007
Autor: luis52

Moin Markus,

du kannst die Likelihoodfunktion noch etwas deutlicher schreiben:

[mm] $L(p)=\{\prod(x_i-2)\}p^{2n}(1-p)^{\sum x_i-3n}$. [/mm]

Beachte, dass der erste Faktor nicht von $p$ abhaengt...

Zu b) Setze [mm] $(2+\hat p)/\hat p=\bar [/mm] x$.
                  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]