matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesMaximum-Norm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Maximum-Norm
Maximum-Norm < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum-Norm: Idee
Status: (Frage) beantwortet Status 
Datum: 12:46 So 18.07.2010
Autor: richardducat

Aufgabe
Es sei die Norm gegeben:
[mm] \parallel x\parallel_\infty [/mm] = [mm] \parallel x_1,...,x_m\parallel_\infty [/mm] := [mm] max\{|x_1|,...,|x_m|\} [/mm]
Geben Sie die Kugel um (0,0) mit dem Radius 1 in [mm] (\IR^2,\parallel *\parallel_\infty) [/mm] an.

Hallo Matheforumler,

ich tu mich leider schwer die Kugel im [mm] \IR^2 [/mm] zu skizzieren.
Dabei ist doch die Menge [mm] max\{|x_i|\}=1 [/mm] zu zeichnen.
Aber wie kann ich mir diese Menge vorstellen?
Nehme ich z.B. einen Vektor, dann sind die [mm] x_i's [/mm] meine Komponenten?
Also würde mir dann [mm] max\{\vektor{1\\ 2}\} [/mm] in der Maximumsnorm die Norm 2 liefern?

Wenn ich mir beispielsweise die Norm [mm] \parallel x\parallel_1:=|x|+|y| [/mm] anschaue, dann ist Menge 1=|x|+|y| zu zeichnen und ich bekomme eine Raute. Das ist mir verständlicher.

Vielleicht kann mir jemand helfen?
Viele Grüße
Richard

        
Bezug
Maximum-Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 So 18.07.2010
Autor: Gonozal_IX

Huhu,

überleg dir, dass gilt:

[mm] $\max(x_1,\ldots,x_n) \le [/mm] c [mm] \gdw x_i \le [/mm] c, [mm] 1\le [/mm] i [mm] \le [/mm] n$

Damit sollte auch das Zeichnen recht einfach gehen :-)

MFG,
Gono.

Bezug
                
Bezug
Maximum-Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:05 So 18.07.2010
Autor: richardducat

hallo gono,

danke für die fixe antwort.

es ist  der formalismus der mir schwierigkeiten bereitet.
kannst du bitte mal versuchen das eben von dir gepostete
auszuformulieren?

[mm] $\max(x_1,\ldots,x_n) \le [/mm] c [mm] \gdw x_i \le [/mm] c, [mm] 1\le [/mm] i [mm] \le [/mm] n$
das heißt, die größte der Zahlen aus max(...) ist kleiner oder gleich einer
Konstanten c, und zwar genau dann, wenn irgendein [mm] x_i [/mm] aus max(...)
kleiner als c ist

da bin ich sprach- und ratlos.

gruß
richard

Bezug
                        
Bezug
Maximum-Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 So 18.07.2010
Autor: schachuzipus

Hallo Richard,

> hallo gono,
>  
> danke für die fixe antwort.
>  
> es ist  der formalismus der mir schwierigkeiten bereitet.
> kannst du bitte mal versuchen das eben von dir gepostete
>  auszuformulieren?
>  
> [mm]\max(x_1,\ldots,x_n) \le c \gdw x_i \le c, 1\le i \le n[/mm]
>  
> das heißt, die größte der Zahlen aus max(...) ist
> kleiner oder gleich einer
> Konstanten c, und zwar genau dann, wenn irgendein [mm]x_i[/mm] aus
> max(...)
> kleiner als c ist
>  
> da bin ich sprach- und ratlos.

Na, wenn du n Zahlen [mm] $x_1,...x_n$ [/mm] hast und das Maximum aus allen ist $c$, dann kann doch keine der n Zahlen [mm] $x_1,...x_n>c$ [/mm] sein.

Sonst wäre c kein Maximum.

Also sind alle Zahlen [mm] $x_1,...,x_n\le [/mm] c$

Das ist also [mm] $\Rightarrow$ [/mm]

Für die andere Richtung nimm an, dass alle n Zahlen [mm] $x_1,...,x_n\le [/mm] c$ seien.

Dann könnte c schon das Maximum sein oder aber auch eine größere Zahl.

Nehmen wir als Bsp. die Menge [mm] $\{1,2\}$; [/mm] beide Zahlen sind [mm] $\le [/mm] 5=:c$, klar, aber [mm] $\max\{1,2\}=2\le [/mm] 5$

Also [mm] $\max\{x_1,...,x_n\}\le [/mm] c$


Für deine Aufgabe benötigst du aber nur [mm] $\Rightarrow$ [/mm]

Du sollst die Menge aller [mm] $(x,y)\in\IR^2$ [/mm] zeichnen mit [mm] $||(x,y)||_{\infty}=1$ [/mm]

also [mm] $\max\{|x|,|y|\}=1$ [/mm]

Dh. beide der Zahlen $|x|$ und $|y|$ müssen [mm] $\le [/mm] 1$ sein. Keine kann größer sein.

Untersuchen wir die möglichen Fälle:

1) [mm] $\max\{|x|,|y|\}=|x|=1$ [/mm]

Dann ist also $|x|=1$ und $|y|$ liegt zwischen 0 und 1.

Kannst du hier die Beträge mal aufdröseln und das weiter untersuchen?

2) [mm] $\max\{|x|,|y|\}=|y|=1$ [/mm]

Dann ist umgekehrt $|y|=1$ und [mm] $0\le|x|\le [/mm] 1$

Auch hier drösel die Beträge auf ...


>
> gruß
>  richard  

LG

schachuzipus


Bezug
                                
Bezug
Maximum-Norm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:48 So 18.07.2010
Autor: richardducat

das hat mir jetzt weitergeholfen.

vielen Dank!

richard

Bezug
                                
Bezug
Maximum-Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 So 18.07.2010
Autor: richardducat

hallo schachuzipus,

z.B. für |x|=1
1) x>0: x=1
2) x<0: x=-1 ?

dann gibt es also die Geraden [mm] x\pm1 [/mm] und [mm] y\pm1 [/mm] die ein Quadrat mit kantenlänge 2 begrenzen



Bezug
                                        
Bezug
Maximum-Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 So 18.07.2010
Autor: schachuzipus

Hallo nochmal,

> hallo schachuzipus,
>  
> z.B. für |x|=1
>  1) x>0: x=1 [ok]
>  2) x<0: x=-1 [ok] ?
>  
> dann gibt es also die Geraden [mm]x\pm1[/mm] und [mm]y\pm1[/mm] die ein
> Quadrat mit kantenlänge 2 begrenzen [ok]

So ist es!

Gruß

schachuzipus





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]