matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMaximum Likelihood Schätzer
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Maximum Likelihood Schätzer
Maximum Likelihood Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum Likelihood Schätzer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:55 Mi 25.07.2018
Autor: Hela123

Aufgabe
Die Radioaktivität in einer Probe soll mit einem Geigerzähler gemessen werden. Es ist bekannt, dass die Probe n Atome enthält. Wenn eines davon zerfällt wird der Zerfall mit einer bekannten Wahrscheinlichkeit von p detektiert. Die Wahrscheinlichkeit, dass ein Atom in einer Sekunde zerfällt ist unbekannt und wird mit [mm]\theta \in [0,1][/mm] bezeichnet. Der Geigerzähler wird eine Sekunde auf die Probe gerichtet und die Anzahl der detektierten Zerfälle [mm]k \in \IZ_{\ge 0}[/mm] wird erfasst.

Bestimme unter Verwendung eines geeigneten statistischen Modells den Maximum-Likelihood-Schätzer für [mm]\theta[/mm].

Hallo Forum,

ich habe eine Frage zu dieser Aufgabe.

Ich habe das Ganze mit Poissonverteilung modelliert:

[mm]P(\{k\}) = e^{-\lambda} \bruch{\lambda^k}{k!} [/mm] mit [mm]\lambda = np\theta[/mm].

Für Maximum Likelihood Schötzung muss ich die Nullstellen der 1.Ableitung nach [mm]\theta[/mm] finden.

Also:

[mm]P(\{k\}) = e^{-(np\theta)} \bruch{(np\theta)^k}{k!} [/mm]
[mm] \bruch{\partial P(\{k\})}{\partial \theta} = e^{-(np\theta)} (-np) \bruch{(np\theta)^k}{k!} + e^{-(np\theta)} \bruch{(np\theta)^{k-1} npk}{k!} [/mm]
Ist das korrekt? Oder was ist mein Fehler?

Für die Nullstellen entsprechend:
[mm]e^{-(np\theta)} (-np) \bruch{(np\theta)^k}{k!} + e^{-(np\theta)} \bruch{(np\theta)^{k-1} npk}{k!} = 0[/mm]
[mm] \bruch {e^{-(np\theta)} np ((np\theta)^{k-1} - k(np \theta)^k)}{k!} = 0[/mm]
[mm] e^{-(np\theta)} np = 0[/mm] ist für jedes [mm]\theta[/mm] nicht gegeben.
Bleibt:
[mm] (np\theta)^{k-1} - k(np \theta)^k = 0[/mm]
[mm] (np\theta)^{k-1}(1 - knp \theta) = 0[/mm]
[mm] (np\theta)^{k-1}= 0[/mm] erfüllt bei [mm]\theta =0[/mm], ist aber nicht das gesuchte Maximum
[mm] (1 - knp \theta) = 0[/mm]
[mm]\theta = \bruch {1}{knp}[/mm] das wäre der gesuchter Term, aber es ist leider falsch, weil die Musterlösung sagt, [mm]\theta = \bruch {k}{np}[/mm]

Wo habe ich einen Fehler gemacht?

Schönen Dank im Voraus!
Hela123

        
Bezug
Maximum Likelihood Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 Mi 25.07.2018
Autor: fred97


> Die Radioaktivität in einer Probe soll mit einem
> Geigerzähler gemessen werden. Es ist bekannt, dass die
> Probe n Atome enthält. Wenn eines davon zerfällt wird der
> Zerfall mit einer bekannten Wahrscheinlichkeit von p
> detektiert. Die Wahrscheinlichkeit, dass ein Atom in einer
> Sekunde zerfällt ist unbekannt und wird mit [mm]\theta \in [0,1][/mm]
> bezeichnet. Der Geigerzähler wird eine Sekunde auf die
> Probe gerichtet und die Anzahl der detektierten Zerfälle [mm]k \in \IZ_{\ge 0}[/mm]
> wird erfasst.
>  
> Bestimme unter Verwendung eines geeigneten statistischen
> Modells den Maximum-Likelihood-Schätzer für [mm]\theta[/mm].
>  Hallo Forum,
>  
> ich habe eine Frage zu dieser Aufgabe.
>  
> Ich habe das Ganze mit Poissonverteilung modelliert:
>  
> [mm]P(\{k\}) = e^{-\lambda} \bruch{\lambda^k}{k!}[/mm] mit [mm]\lambda = np\theta[/mm].
>  
> Für Maximum Likelihood Schötzung muss ich die Nullstellen
> der 1.Ableitung nach [mm]\theta[/mm] finden.
>  
> Also:
>  
> [mm]P(\{k\}) = e^{-(np\theta)} \bruch{(np\theta)^k}{k!}[/mm]
>  
> [mm]\bruch{\partial P(\{k\})}{\partial \theta} = e^{-(np\theta)} (-np) \bruch{(np\theta)^k}{k!} + e^{-(np\theta)} \bruch{(np\theta)^{k-1} npk}{k!}[/mm]
>  
> Ist das korrekt? Oder was ist mein Fehler?

Bis hier ist alles O.K.

>  
> Für die Nullstellen entsprechend:
>  [mm]e^{-(np\theta)} (-np) \bruch{(np\theta)^k}{k!} + e^{-(np\theta)} \bruch{(np\theta)^{k-1} npk}{k!} = 0[/mm]
>  
> [mm]\bruch {e^{-(np\theta)} np ((np\theta)^{k-1} - k(np \theta)^k)}{k!} = 0[/mm]


Hier ist Dein Fehler ! Richtig ist

[mm]\bruch {e^{-(np\theta)} np (k(np\theta)^{k-1} - (np \theta)^k)}{k!} = 0[/mm]




>  
> [mm]e^{-(np\theta)} np = 0[/mm] ist für jedes [mm]\theta[/mm] nicht
> gegeben.
>  Bleibt:
>  [mm](np\theta)^{k-1} - k(np \theta)^k = 0[/mm]
>  [mm](np\theta)^{k-1}(1 - knp \theta) = 0[/mm]
>  
> [mm](np\theta)^{k-1}= 0[/mm] erfüllt bei [mm]\theta =0[/mm], ist aber nicht
> das gesuchte Maximum
>  [mm](1 - knp \theta) = 0[/mm]
>  [mm]\theta = \bruch {1}{knp}[/mm] das wäre
> der gesuchter Term, aber es ist leider falsch, weil die
> Musterlösung sagt, [mm]\theta = \bruch {k}{np}[/mm]
>
> Wo habe ich einen Fehler gemacht?
>  
> Schönen Dank im Voraus!
>  Hela123


Bezug
                
Bezug
Maximum Likelihood Schätzer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:23 Mi 25.07.2018
Autor: Hela123

Hallo Fred97,

vielen vielen Dank für Deine Antwort!
Jetzt ist natürlich alles klar!

Noch mal danke und schönen Gruß,
Hela123

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]