matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikMaximum Likelihood Schätzer
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "mathematische Statistik" - Maximum Likelihood Schätzer
Maximum Likelihood Schätzer < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum Likelihood Schätzer: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:05 Fr 30.01.2009
Autor: original_tom

Aufgabe
An einer Maschine wird in vier Schichten durchgehend Tag und Nacht ein bestimmtes Produkt erzeugt. Es wird angenommen, dass jeweils gleich viele Produkte in den Nachtschichten (1 und 4) und in den beiden Tagschichten (2 und 3) erzeugt werden. Folgende Stichprobe liege vor:

1: 45
2: 31
3: 32
4: 42

(a) Man gebe die Verteilung von X = i, Produkt wird in Schicht i erzeugt, in Parameterform an.
(b) Wie lautet die Likelihoodfunktion?
(c) Berechnen Sie die Maximum–Likelihood–Schätzer der Parameter und geben Sie die geschätzte Verteilung an.

Hallo,

liege ich hier richtig wenn ich bei (a) sage:

   X=i    1        2         3    4
P(X=i)    p     1/2-p     1/2-p   p

oder sollte ich statt 1/2-p, q nehmen, wobei ich dann ja nicht garantieren kann dass die summe der Wahrscheinlichkeiten 1 ist.

(b) hier habe ich dann [mm] \produkt_{i=1}^{n} (p^{n_{1}}*(\bruch{1}{2}-p)^{n_{2}}*(\bruch{1}{2}-p)^{n_{3}}*p^{n_{4}} [/mm]

(c) und daraus ergibt sich ein Schätzer für p = [mm] \bruch{n_{1}+n_{4}}{2n} [/mm] wobei n = [mm] n_{1}+n_{2}+n_{3}+n_{4} [/mm]

Wenn jemand einen Tipp hätte ob ich hier auf dem Richtigen Weg bin, wäre ich dankbar.

MfG
tom

        
Bezug
Maximum Likelihood Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Fr 30.01.2009
Autor: luis52


>  
> Hallo,
>  
> liege ich hier richtig wenn ich bei (a) sage:
>  
> X=i    1        2         3    4
>  P(X=i)    p     1/2-p     1/2-p   p

[ok]

>  
> oder sollte ich statt 1/2-p, q nehmen, wobei ich dann ja
> nicht garantieren kann dass die summe der
> Wahrscheinlichkeiten 1 ist.
>  
> (b) hier habe ich dann [mm]\produkt_{i=1}^{n} (p^{n_{1}}*(\bruch{1}{2}-p)^{n_{2}}*(\bruch{1}{2}-p)^{n_{3}}*p^{n_{4}}[/mm]

[notok] Kein [mm] $\prod [/mm] $.


>  
> (c) und daraus ergibt sich ein Schätzer für p =
> [mm]\bruch{n_{1}+n_{4}}{2n}[/mm] wobei n = [mm]n_{1}+n_{2}+n_{3}+n_{4}[/mm]

Das habe ich nicht nachgerechnet.


vg Luis

Bezug
                
Bezug
Maximum Likelihood Schätzer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:01 Fr 30.01.2009
Autor: original_tom

hallo,

> [notok] Kein [mm]\prod [/mm].

Das Produkt war ein Tippfehler sollte eigentlich [mm] \produkt_{i=1}^{n}(P(X_{i} [/mm] = [mm] x_{i})) [/mm] heißen.

weitergerechnet habe ich dann folgendermaßen:

ln(L(....)) = [mm] n_{1}*ln(p)+n_{2}*ln(1/2 [/mm] - [mm] p)+n_{3}*ln(1/2 [/mm] - [mm] p)+n_{4}*ln(p) [/mm]

dann Ableiten, 0 setzen und umformen. Was mich auf das zuvor genannte Ergebnis brachte.

mfg tom


Bezug
                        
Bezug
Maximum Likelihood Schätzer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:13 Fr 30.01.2009
Autor: luis52


> weitergerechnet habe ich dann folgendermaßen:
>  
> ln(L(....)) = [mm]n_{1}*ln(p)+n_{2}*ln(1/2[/mm] - [mm]p)+n_{3}*ln(1/2[/mm] -
> [mm]p)+n_{4}*ln(p)[/mm]
>  
> dann Ableiten, 0 setzen und umformen. Was mich auf das
> zuvor genannte Ergebnis brachte.


[ok] Brav! ;-)


vg Luis  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]