matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMaximum einer Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mengenlehre" - Maximum einer Menge
Maximum einer Menge < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum einer Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 So 26.02.2006
Autor: F22

Aufgabe
Untersuchen sie folgende Menge auf Beschränktheit und bestimmen sie Infimum, Supremum, Minimum, Maxium (sofern diese existieren):

[mm]M_1:=\{x\in (-\infty, 0]:(x+1)*(2-x)<0\}[/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Leute,

oben genannte Aufgabe wurde bereits vor längerem in einerm Übung gerechnet und besprochen. Nun rechne ich diese zur Klausurvorbereitung erneut, und verstehe folgendes nicht:

[mm] M_1:=(-\infty,-1] \notin (-\infty,0] [/mm]
[mm] \Rightarrow \sup(M_1)=-1\notin M_1[/mm]

Dass das  Supremum -1 ist, ist mir klar, nur ich verstehe nicht, warum -1 nicht Element des Intervall [mm](-\infty,0][/mm], und somit kein Maximum ist.

Kan mir das einer erklären?

Vielen Dank

F22

        
Bezug
Maximum einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 So 26.02.2006
Autor: Micha

Hallo!
> Untersuchen sie folgende Menge auf Beschränktheit und
> bestimmen sie Infimum, Supremum, Minimum, Maxium (sofern
> diese existieren):
>  
> [mm][mm]M_1:=\{x\in (-\infty, 0]:(x+1)*(2-x)<0\}[/mm][/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

> Hallo Leute,

> oben genannte Aufgabe wurde bereits vor längerem in einerm Übung gerechnet und besprochen. Nun rechne ich diese zur
> Klausurvorbereitung erneut, und verstehe folgendes nicht:

> [mm]M_1:=(-\infty,-1] \notin (-\infty,0][/mm]
>  [mm]\Rightarrow \sup(M_1)=-1\notin M_1[/mm]

> Dass das  Supremum -1 ist, ist mir klar, nur ich verstehe nicht, warum -1 nicht Element des Intervall [mm](-\infty,0][/mm], und > somit kein Maximum ist.

Also deine Notation ist für mich schon etwas ungewöhnlich. Was meinst du mit [mm]M_1:=(-\infty,-1] \notin (-\infty,0][/mm] ?

Es ist ja klar, dass im INtervall $- [mm] \infty$ [/mm] und 0 nur die Zahlen kleiner -1 die Bedingung erfüllen. Also ist z.: -0,5 eine obere Schranke. Die kleinste obere Schranke ist -1 (das ist die Definition vom Supremum), denn es gibt keine obere Schranke die kleiner als -1 ist. Nun muss man das Supremum noch einmal untersuchen. Ist es vielleicht ein Maximum? Dann muss man schauen, ob sie die gesuchte Eigenschaft hat.

1. Sie liegt im Intervall $- [mm] \infty$ [/mm] und 0.

aber sie erfüllt nicht die Zusatzbedingung, weil (-1+1)*(2-(-1)) = 0*3 = 0 ist, aber nicht kleiner 0!

Also ist -1 selbst nicht Element der Menge, dere Supremum sie ist. Also kein Maximum!

Gruß Micha ;-)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]