matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMaximum von Summe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Maximum von Summe
Maximum von Summe < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum von Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:56 Mi 26.07.2006
Autor: Bastiane

Hallo zusammen!

Wahrscheinlich ist es nur heute schon zu spät, so dass ich nicht drauf komme, denn wahrscheinlich ist es gar nicht so schwierig. Und zwar habe ich die Summe:

[mm] \summe_{i=1}^k\log(n_i) [/mm]

mit der Eigenschaft:

[mm] \summe_{i=1}^kn_i=n [/mm]


Und meine Frage ist: Warum nimmt diese Summe das Maximum bei [mm] n_i=\bruch{n}{k} [/mm] an?

Wäre schön, wenn mir jemand auf die Sprünge helfen könnte, oder einen Ansatz gibt, wie ich das "mathematisch beweisen" kann.

Viele Grüße
Bastiane
[cap]


        
Bezug
Maximum von Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 02:21 Do 27.07.2006
Autor: leduart

Hallo Bastiane
> Hallo zusammen!
>  
> Wahrscheinlich ist es nur heute schon zu spät, so dass ich
> nicht drauf komme, denn wahrscheinlich ist es gar nicht so
> schwierig. Und zwar habe ich die Summe:
>  
> [mm]\summe_{i=1}^k\log(n_i)[/mm]
>

Umgeformt:  [mm]\summe_{i=1}^k\log(n_i)=log \produkt_{i=1}^{k}n_i[/mm]

>
> mit der Eigenschaft:
>  
> [mm]\summe_{i=1}^kn_i=n[/mm]
>
> Und meine Frage ist: Warum nimmt diese Summe das Maximum
> bei [mm]n_i=\bruch{n}{k}[/mm] an?
>

eingesetzt in die Formel oben ergibt sich damit fuer die [mm] Summe:log(\bruch{n}{k})^n=n*log\bruch{n}{k} [/mm]
jetzt ist einfach zu zeigen,wenn du eines der n/k verkleinerst um r musst du ein anderes vergroessern also hast du noch [mm] :$(n-2)*log\bruch{n}{k}+log((\bruch{n}{k}+r)*(\bruch{n}{k}-r))$ [/mm]
noch zu zeigen [mm] $log((\bruch{n}{k}+r)*(\bruch{n}{k}-r))<2*log(\bruch{n}{k})$ [/mm]
ein anderer Weg, ist es die summe als Unter oder Obersumme eines Integrals zu betrachten, aber ich denk das wird laenger.
Gruss leduart


Bezug
        
Bezug
Maximum von Summe: Andere Methode
Status: (Antwort) fertig Status 
Datum: 11:06 Do 27.07.2006
Autor: MatthiasKr

Hallo Bastiane,

Und zwar habe ich die Summe:

>  
> [mm]\summe_{i=1}^k\log(n_i)[/mm]
>
> mit der Eigenschaft:
>  
> [mm]\summe_{i=1}^kn_i=n[/mm]
>
> Und meine Frage ist: Warum nimmt diese Summe das Maximum
> bei [mm]n_i=\bruch{n}{k}[/mm] an?

Wie wäre es mit der lagrange-multiplikator-methode? bietet sich eigentlich an, da du eine funktion unter einer nebenbedingung maximieren möchtest, nämlich

[mm] $f(x)=\summe_{i=1}^k\log(x_i)$ [/mm]

unter der nebenbedingung

[mm] $F(x)=\summe_{i=1}^k x_i=n$ [/mm]

die gradienten von f und F müssen in [mm] $x_m$ [/mm] (=Maximalstelle von f mit k Komponenten) notwendig parallel sein, also

[mm] $\nabla f(x_m)=\lambda\cdot \nabla F(x_m)$ [/mm]

Nun ist

[mm] $\nabla F(x)=\vektor{1\\ \vdots \\ 1}$ [/mm] konstant.

Weiter ist

[mm] $\nabla f(x)=\vektor{\frac1{x_1}\\ \vdots \\ \frac1{x_k} }$. [/mm]


Damit die lagrange-bedingung erfüllt ist, müssen also alle Komponenten von [mm] $x_m$ [/mm] gleich sein [mm] (=$\frac [/mm] n k$).

Da die hessematrix von f in diesem Punkt offensichtlich negativ definit ist, haben wir ein Maximum. ;-)

Gruß
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]