matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungMehrdimensionale R-Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Mehrdimensionale R-Integrale
Mehrdimensionale R-Integrale < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrdimensionale R-Integrale: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:07 So 26.02.2012
Autor: thomas06

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
es geht um die Vorgehensweise bei der Untersuchung von mehrdimensionalen uneigentlichen R-Integralen. Wie man sie berechnet, ist mir klar. Ich bin mir nur nicht ganz sicher, ob ich den Transformationssatz und den Satz von Fubini richtig anwende, bzw. formulieren kann.

Die Aufgabe sieht folgendermaßen aus.

Existiert das folgende Integral als uneigentliches R-Integral?

J= [mm] \integral_{K_1(0)}{1/Euklidische Norm(x) dx} [/mm]
Dabei bezeichnet [mm] K_1(0) [/mm] = [mm] \left\{x\in\IR^2, mit Euklidische Norm(x)< r\right\} [/mm]


Wie schon gesagt, wie man es berechnet weiß ich. Nur wie man argumentiert, dass man so rechnen darf ist mir noch nicht ganz klar. Ich formuliere es jetzt mal und vlt. könnte mir jemand ja dann dazu sagen, ob meine Argumentation richtig ist.
Okay es geht los.

Da wir hier eine Singularität in 0 haben, müssen wir das Integral auf ausschöpfenden Teilmengen [mm] D_\epsilon\subset [/mm] D, die quadrierbar sind, berechnen und anschließend den Limes für [mm] \epsilon \to [/mm] 0 betrachten. Existiert dieser, so ist das Integral über den Betrag der Funktion gleichmäßig beschränkt und das uneigentliche Integral existiert.
Um das integral nun zu berechnen, muss zuerst noch auf Polarkoordinaten transformiert werden und der Satz von Fubini angewendet werden.
Dabei sei nun angenommen, dass [mm] F(\bruch{1}{Euklidische Norm(x)}) [/mm] R-integrierbar ist.

Die Abbildung [mm] (r,\theta)\mapsto(x,y) [/mm] = [mm] (r*cos\theta, r*sin\theta) [/mm] =  [mm] \Phi(r,\theta) [/mm] ist stetig differenzierbar, bijektiv und Lipschitz-stetig auf dem Intervall [mm] S=(0,2\pi) \times (\epsilon,1), [/mm] welches offen und quadrierbar ist.
Da [mm] \Phi(S) [/mm] = [mm] D_\epsilon [/mm] und die Determinate der Jacobimatrix von [mm] \Phi [/mm] = r ist folgt nach dem Transformationssatz
J [mm] =\integral_{D_ \epsilon}{\bruch{1}{Euklidische Norm(x)}dx} =\integral_{S}{\bruch{1}{r}*rdrd\theta} [/mm]
Anwendung des Satzes von Fubini auf [mm] S_1 =\left[0,2\pi\right]\times \left[0,r \right] [/mm] (Erweiterung der offenen Intervalle um Nullmenge auf kompakte Intervalle) liefert nun.
J [mm] =\integral_{0}^{2\pi}\integral_{\epsilon}^{1}{\bruch{r}{r}drd\theta} [/mm]

Kann man das alles so sagen, oder liegen hier grobe Denk/Argumentationsfehler vor?

Vielen Dank für die Hilfe

        
Bezug
Mehrdimensionale R-Integrale: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 29.02.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]