matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitMehrdimensionale Stetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Mehrdimensionale Stetigkeit
Mehrdimensionale Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrdimensionale Stetigkeit: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:31 Mi 20.11.2019
Autor: bondi

Aufgabe
Ist die Funktion $ f: [mm] \IR^2 \rightarrow \IR [/mm] $ stetig in (0,0) bzw. stetig?

a) $ [mm] f(n)=\begin{cases} \bruch{x-y}{x^2+y^2}, & \mbox{ } falls \mbox{ } (x,y) \neq (0,0) \\ 0, & \mbox{ } falls \mbox{} (x,y) = (0,0) \end{cases} [/mm] $

Hinweis zu a) Betrachte die Folge $ [mm] \left( \bruch{1}{n}, 0 \right), [/mm] n [mm] \in \IN [/mm] $

Hallo,
kurz was Technisches. Letztes WE war Euer Server nicht erreichbar. Seitdem er wieder da ist, gibt es mit den $-Zeichen, sprich den LaTeX-Wrappern Probleme. Mal werden sie fehlerfrei gelesen. Ein ander Mal nicht (s. posting).

Zum Eigentlichen:

Wir haben die Aufgabe neulich schon einmal besprochen. Der Verlauf ist also klar. Nun aber gab der Prof die Aufgabe noch einmal mit dem darunter aufgeführten Hinweis aus. Die letzte Klausur hat mich an einigen Stellen wichtige Formpunkte gekostet.
Ich verstehe den Hinweis als Hinweis. Würde also ungeachtet dessen meinen Weg gehen.

Teilt ihr meine Meinung?

Viele Grüße,
bondi



        
Bezug
Mehrdimensionale Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 06:56 Do 21.11.2019
Autor: fred97


> Ist die Funktion [mm]f: \IR^2 \rightarrow \IR[/mm] stetig in (0,0)
> bzw. stetig?
>  
> a) [mm]f(n)=\begin{cases} \bruch{x-y}{x^2+y^2}, & \mbox{ } falls \mbox{ } (x,y) \neq (0,0) \\ 0, & \mbox{ } falls \mbox{} (x,y) = (0,0) \end{cases}[/mm]


Das soll wohl so lauten:

[mm]f(x,y)=\begin{cases} \bruch{x-y}{x^2+y^2}, & \mbox{ } falls \mbox{ } (x,y) \neq (0,0) \\ 0, & \mbox{ } falls \mbox{} (x,y) = (0,0) \end{cases}[/mm]


>  
> Hinweis zu a) Betrachte die Folge [mm]\left( \bruch{1}{n}, 0 \right), n \in \IN[/mm]
>  
> Hallo,
>  kurz was Technisches. Letztes WE war Euer Server nicht
> erreichbar. Seitdem er wieder da ist, gibt es mit den
> $-Zeichen, sprich den LaTeX-Wrappern Probleme. Mal werden
> sie fehlerfrei gelesen. Ein ander Mal nicht (s. posting).
>  
> Zum Eigentlichen:
>
> Wir haben die Aufgabe neulich schon einmal besprochen.


Damals hatten wir allerdings:



$ [mm] f(x,y)=\begin{cases} \bruch{x^2-y^2}{x^2+y^2}, & \mbox{ } falls \mbox{ } (x,y) \neq (0,0) \\ 0, & \mbox{ } falls \mbox{} (x,y) = (0,0) \end{cases} [/mm] $

> Der Verlauf ist also klar. Nun aber gab der Prof die
> Aufgabe noch einmal mit dem darunter aufgeführten Hinweis
> aus. Die letzte Klausur hat mich an einigen Stellen
> wichtige Formpunkte gekostet.
>  Ich verstehe den Hinweis als Hinweis.


Ja, ein Hinweis ist als Hinweis zu verstehe, was sonst ?

> Würde also
> ungeachtet dessen meinen Weg gehen.

Welchen Weg ? Früher und auch jetzt hast Du diese Aufgabe nicht bearbeitet.

Welche Aufgabe ist es nun, die mit den Quadraten oder die ohne Quadrate ?


Egal, bei beiden kommst Du mit dem Hinweis ratz-fatz ans Ziel:

Ist

$ [mm] f(x,y)=\begin{cases} \bruch{x^2-y^2}{x^2+y^2}, & \mbox{ } falls \mbox{ } (x,y) \neq (0,0) \\ 0, & \mbox{ } falls \mbox{} (x,y) = (0,0) \end{cases} [/mm] $,

so haben wir [mm] $f(\frac{1}{n},0)=1 \to [/mm] 1 [mm] \ne [/mm] 0 =f(0,0)$ für $n [mm] \to \infty.$ [/mm]

$f$ ist also in (0,0) nicht stetig.

Ist hingegen

$ [mm] f(x,y)=\begin{cases} \bruch{x-y}{x^2+y^2}, & \mbox{ } falls \mbox{ } (x,y) \neq (0,0) \\ 0, & \mbox{ } falls \mbox{} (x,y) = (0,0) \end{cases} [/mm] $,

so haben wir [mm] $f(\frac{1}{n},0)= [/mm] n [mm] \to \infty$ [/mm] für $n [mm] \to \infty.$ [/mm]

$f$ ist also in (0,0) nicht stetig.

>  
> Teilt ihr meine Meinung?
>  
> Viele Grüße,
>  bondi
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]