matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMehrfachintegrale+Kugelvolumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Mehrfachintegrale+Kugelvolumen
Mehrfachintegrale+Kugelvolumen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrfachintegrale+Kugelvolumen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:35 Sa 09.07.2005
Autor: darkcoldknight

Hallo!
Das Problem wäre allgemein das Volumen einer kugel vom Radius R mittels doppel und Dreifachintegral zu bestimmen.
Nun denke ich dass es hier auf jedenfall sinnvoll ist Kugelkoordinaten zu verwenden, d.h. ich setzte für die allgemeine Kugelfkt. [mm] x^2+y^2+z^2=R^2 [/mm] für x = rcos [mm] \alpha* [/mm] sin [mm] \beta [/mm] ; y=rsin [mm] \alpha sin\beta [/mm] ; z = rcos [mm] \beta [/mm] richtig???
Wie komme ich dann auf die jeweiligen Integrationsgrenzen für das doppel und Dreifachintegral???

Wäre euch für eure Hilfe sehr dankbar!

        
Bezug
Mehrfachintegrale+Kugelvolumen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Sa 09.07.2005
Autor: TranVanLuu

Hallo darkcoldknight!


Soviel kann ich dir sagen:

[mm] \integral [/mm]  dV = [mm] \integral\integral\integral [/mm] dxdydz = [mm] \integral\integral\integral r^2 sin(\alpha) d\alpha d\beta [/mm] dr

Prinzipiell sollte man mit deinen Angaben

> allgemeine Kugelfkt. [mm]x^2+y^2+z^2=R^2[/mm] für x = rcos [mm]\alpha*[/mm]
> sin [mm]\beta[/mm] ; y=rsin [mm]\alpha sin\beta[/mm] ; z = rcos [mm]\beta[/mm]

dahin kommen, wie genau, kann ich dir nicht sagen - ich glaube, dazu verwendet man die sogenannte Funktionaldeterminante, mit der ich mich aber nciht auskenne.

Wir haben uns das immer graphisch klargemacht. []Dies ist nicht die beste Abbildung, aber grad die einzige, die ich gefunden habe. Vielleicht reicht es aber schon, um das zu verdeutlichen, wie die Differentiale zu wählen sind!

Die Grenzen sehen dann folgendermaßen aus.
r : von 0 bis R (dann haben wir quasi eine Gerade entlang des Radius)
[mm] \beta [/mm] : von 0 bis [mm] 2\pi [/mm] (mit der Geraden sind wir dann einmal um 360° "gefahren", haben also nun einen Kreis)
[mm] \alpha [/mm] : von 0 bis [mm] \pi [/mm] (hier nur noch bis pi!! warum, wird eigentlich recht deutlich, wenn du dir mal einen Teller nimmst und den um 180° bzw. 360° drehst, bei 180° entsteht eine Kugel, bei 360° entsteht die Kugel quasi zweimal!)

Hoffe, das hilft dir etwas...

Gruß Tran

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]